PNP NPN三極體原理講解

2021-01-17 電子工程專輯

對三極體放大作用的理解,切記一點:能量不會無緣無故的產生,所以,三極體一定不會產生能量。

但三極體厲害的地方在於:它可以通過小電流去控制大電流。放大的原理就在於:通過小的交流輸入,控制大的靜態直流。假設三極體是個大壩,這個大壩奇怪的地方是,有兩個閥門,一個大閥門,一個小閥門。小閥門可以用人力打開,大閥門很重,人力是打不開的,只能通過小閥門的水力打開。

所以,平常的工作流程便是,每當放水的時候,人們就打開小閥門,很小的水流涓涓流出,這涓涓細流衝擊大閥門的開關,大閥門隨之打開,洶湧的江水滔滔流下。

如果不停地改變小閥門開啟的大小,那麼大閥門也相應地不停改變,假若能嚴格地按比例改變,那麼,完美的控制就完成了。

在這裡,Ube就是小水流,Uce就是大水流,人就是輸入信號。當然,如果把水流比為電流的話,會更確切,因為三極體畢竟是一個電流控制元件。

如果某一天,天氣很旱,江水沒有了,也就是大的水流那邊是空的。管理員這時候打開了小閥門,儘管小閥門還是一如既往地衝擊大閥門,並使之開啟,但因為沒有水流的存在,所以,並沒有水流出來。這就是三極體中的截止區。

飽和區是一樣的,因為此時江水達到了很大很大的程度,管理員開的閥門大小已經沒用了。如果不開閥門江水就自己衝開了,這就是二極體的擊穿。

在模擬電路中,一般閥門是半開的,通過控制其開啟大小來決定輸出水流的大小。沒有信號的時候,水流也會流,所以,不工作的時候,也會有功耗。而在數字電路中,閥門則處於開或是關兩個狀態。當不工作的時候,閥門是完全關閉的,沒有功耗。

結構與操作原理

三極體的基本結構是兩個反向連結的pn接面,如圖1所示,可有pnp和npn兩種組合。三個接出來的端點依序稱為射極(emitter, E)、基極(base, B)和集
極(collector, C),名稱來源和它們在三極體操作時的功能有關。圖中也顯示出npn與pnp三極體的電路符號,射極特別被標出,箭號所指的極為n型半導體,和二極體的符號一致。在沒接外加偏壓時,兩個pn接面都會形成耗盡區,將中性的p型區和n型區隔開。

圖1 pnp(a)與npn(b)

三極體的結構示意圖與電路符號。

三極體的電特性和兩個pn接面的偏壓有關,工作區間也依偏壓方式來分類,這裡我們先討論最常用的所謂」

正向活性區」(forward active),在此區EB極間的pn接面維持在正向偏壓,而BC極間的pn接面則在反向偏壓,通常用作放大器的三極體都以此方式偏壓。圖2(a)為一pnp三極體在此偏壓區的示意圖。

EB接面的空乏區由於在正向偏壓會變窄,載體看到的位障變小,射極的電洞會注入到基極,基極的電子也會注入到射極;而BC接面的耗盡區則會變寬,載體看到的位障變大,故本身是不導通的。圖2(b)畫的是沒外加偏壓,和偏壓在正向活性區兩種情形下,電洞和電子的電位能的分布圖。

三極體和兩個反向相接的pn二極體有什麼差別呢?其間最大的不同部分就在於三極體的兩個接面相當接近。以上述之偏壓在正向活性區之pnp三極體為例,射極的電洞注入基極的n型中性區,馬上被多數載體電子包圍遮蔽,然後朝集電極方向擴散,同時也被電子複合。當沒有被複合的電洞到達BC接面的耗盡區時,會被此區內的電場加速掃入集電極,電洞在集電極中為多數載體,很快藉由漂移電流到達連結外部的歐姆接點,形成集電極電流IC。

IC的大小和BC間反向偏壓的大小關係不大。

基極外部僅需提供與注入電洞複合部分的電子流IBrec,與由基極注入射極的電子流InB? E(這部分是三極體作用不需要的部分)。

InB? E在射極與與電洞複合,即InB? E=IErec。pnp三極體在正向活性區時主要的電流種類可以清楚地在圖3(a)中看出。

圖2 (a)一pnp三極體偏壓在正向活性區;(b)沒外加偏壓,和偏壓在正向活性區兩種情形下,電洞和電子的電位能的分布圖比較。

圖3 (a) pnp

三極體在正向活性區時主要的電流種類;(b)電洞電位能分布及注入的情形;(c)電子的電位能分布及注入的情形。

一般三極體設計時,射極的摻雜濃度較基極的高許多,如此由射極注入基極的射極主要載體電洞(也就是基極的少數載體)IpE? B電流會比由基極注入射極的載體

電子電流InB? E大很多,三極體的效益比較高。圖3(b)和(c)個別畫出電洞和電子的電位能分布及載體注入的情形。同時如果基極中性區的寬度WB愈窄,電洞通過基極的時間愈短,被多數載體電子複合的機率愈低,到達集電極的有效電洞流IpE? C愈大,基極必須提供的複合電子流也降低,三極體的效益也就愈高。

集電極的摻雜通常最低,如此可增大CB極的崩潰電壓,並減小BC間反向偏壓的pn接面的反向飽和電流,這裡我們忽略這個反向飽和電流。

由圖4(a),我們可以把各種電流的關係寫下來:射極電流、基極電流、集電極電流。

關注微信公眾號電子工程專輯,回復關鍵詞獲取更多內容

回復電路,查看電子設計技術文章合集

回復PCB,查看PCB技術文章合集

回復三極體,查看三極體技術文章合集

還有更多關鍵詞可回復,如:開關電源、運放、電容、電感、接地、示波器、濾波器、靜電、萬用表、二極體等

長按二維碼識別關注


相關焦點

  • pnp與npn型傳感器(開關型)分為六類
    打開APP pnp與npn型傳感器(開關型)分為六類 工控論壇 發表於 2021-01-08 09:54:41 pnp與npn型其實就是利用的飽和和截止
  • 接近開關pnp和npn的區別
    接近開關pnp和npn的區別 PNP與NPN型傳感器其實就是利用三極體的飽和和截止,輸出兩種狀態,屬於開關型傳感器。但輸出信號是截然相反的,即高電平和低電平。PNP輸出是低電平0,NPN輸出的是高電平1。
  • PNP 和NPN型三極體,放大電路工作原理,類似水龍頭?
    一、了解三極體三極體:是三個引腳的放大器件的統稱;全稱為半導體三極體,也稱雙極型電晶體、晶體三極體等;是電子電路的核心元件,具有電流放大作用,可通過放大微弱電信號;因此常被用作無觸點開關。兩個P型中間夾N型組合我們稱作PNP型三極體;同理兩個N型中間夾P型就是NPN型三極體;如下圖所示:三、工作原理:N型和P型半導體按照特定的工藝要求組合形成PN結,然後在PN結、N型和P型這三塊材料分別引出三個電極發射極E、集電極C和基極B。
  • PNP三極體和NPN三極體開關電路
    晶體三極體,是半導體基本元器件之一,具有電流放大作用,是電子電路的核心元件。三極體是在一塊半導體基片上製作兩個相距很近的PN結,兩個PN結把整塊半導體分成三部分,中間部分是基區,兩側部分是發射區和集電區,排列方式有PNP和NPN兩種。PNP與NPN兩種三極體各引腳的表示:
  • 如何區分三極體PNP與NPN
    半導體三極體也稱為晶體三極體,可以說它是電子電路中最重要的器件。它最主要的功能是電流放大和開關作用。三極體顧名思義具有三個電極。
  • PNP與NPN兩種三極體使用方法
    首先來說一下NPN型,這種型號的三極體在用作開關時,大都是發射極接地,集電極接高電平,基極接控制信號。其次對於PNP型的三極體用作開關時,一般都是發射極接高電平,基極接控制信號。三極體導通時,電流從發射極流向集電極。放大狀態主要應用於模擬電路中,且用法和計算方法也比較複雜,我們暫時用不到。
  • NPN與PNP光電開關原理與接線方法
    NPN與PNP光電開關原理與接線方法PNP.與NPN型傳感器根本的區別在哪?
  • PNP與NPN型三極體的使用及連接方法詳解
    三極體的使用一直是我們在設計電路的時候經常會用到的。  首先來說一下NPN型,這種型號的三極體在用於開關狀態時,大都是按圖一的接法:發射極接地,集電極接高電平,基極接控制信號。在圖一裡,當信號Green為高電平時,三極體導通,電流從集電極流向發射極,也就是說從Vcc到地構成一迴路,這個時候發光二極體導通發光。
  • 對NPN和PNP類開關的一點認識
    點擊↑↑電工電氣學習 ,關注並置頂即可長期免費訂閱50萬+維修電工關注的微信平臺:技術分享、學習交流、資料下載      在工業控制領域我們會見到並用到很多接近開關,光電開關等非接觸式的開關,這類開關又按構造分為pnp
  • 接近開關有PNP型和NPN型,不就是個開關,又有何區別?
    市面上的接近開關類別很多,只是工作原理不同,工作過程都是無接觸即可實現開關目的。今天這裡不講它的工作原理,只是淺談接近開關的兩種類型有何區別?PNP和NPN型接近開關。這個問題與我們使用有關,它關係到接線是否正確。
  • NPN三極體與PNP三極體除極性相反外,使用起來效果是一樣的嗎?
    NPN和PNP是兩種不同類型的三極體,除了極性相反之外,其用法也不一樣,在電路板上應用時,到底選NPN還是PNP三極體需根據電路的實際情況而定,並不是可以使用NPN三極體的地方就一定可以使用PNP三極體進行設計。
  • 三極體2N3055組成的簡易DCDC降壓電路圖(電感降壓式/線性穩壓電源)
    三極體2N3055組成的簡易DCDC降壓電路圖(一) 下圖所示是一採用功率三極體2N3055的簡易DCDC降壓電路圖,採用不同的電阻R1及穩壓二極體可以調整輸出不同的電壓。,2N3417可用BD139或其他三極體,二極體1N914也可以採用常用二極體1N4148.
  • 分析穩壓三極體的工作原理
    圖1是一個固定穩壓電路。電阻作用1是向三極體提供偏置電流,使三極體導通。2是向穩壓管提供工作電流,穩壓管接在基極上。所以基極的電壓被穩壓管穩定了。又因為三極體基極與射極之間是一個二極體,而二極體導通時兩端電壓是穩定的0.7V(以矽管算)。所以此電路輸出電壓等於穩壓管穩定值減0.7V。電容的作用與穩壓無關,但是在這類穩壓電路中往往「順便」用它。
  • 三極體的的概念及其工作原理
    在我們板子上的 LED 小燈部分,就有這個三極體的應用了,圖 3-5 的 LED 電路中的 Q16就是一個 PNP 型的三極體。 圖 3-5  LED 電路 三極體的初步認識三極體是一種很常用的控制和驅動器件,常用的三極體根據材料分有矽管和鍺管兩種,原理相同,壓降略有不同,矽管用的較普遍,而鍺管應用較少,本課程就用矽管的參數來進行講解。三極體有 2 種類型,分別是 PNP 型和 NPN 型。先來認識一下,如圖 3-6。
  • 關於NPN三極體的導通條件分析
    對於NPN三極體的導通條件我們現在來回顧一下,首先三極體內部是有兩個PN結的,集電極C與基極B間一個PN結我們叫集電結;發射極與基極間一個PN結我們叫集電發射結。這三個極的電壓關係是Uc》Ub》Ue,所以三極體內部的兩個PN結的情況是這樣的:對於發射結來說P極電壓高於N極電壓,這個類似於二極體的正嚮導通一樣,我們稱作這種情況叫發射結正偏;集電結來說P極電壓低於N極電壓,這個類似於二極體的反向截止一樣,我們稱作這種情況叫集電結的反偏。因此三極體外部三個電極只有維持Uc》Ub》Ue這種狀況才能使內部處於這種狀態,也就是說三極體也才能處於放大導通狀態。
  • 1.5V電池驅動的超簡單的單音門鈴,只需兩個三極體和電阻、電容
    一個pnp型三極體和一個npn型三極體用來產生振蕩,這個結構有一個專門的名詞,叫作「互補型自激多諧音頻振蕩器」。電阻R1和電容C1的乘積決定了振蕩的頻率,乘積越大,頻率越低,那麼聲音就越低沉。反之則聲調高,聲音尖銳。理論上來說這個電路也可以產生次聲波和超聲波。
  • 什麼是NPN型和PNP型接近開關,有什麼區別
    從用戶的角度來講,NPN和PNP只是輸出信號不同,正好相反,下面就從硬體原理上分別解釋。NPN型接近開關NPN型接近開關簡稱N型開關,其輸出信號為低電平。其輸出又分為常開型開關和常閉型開關。大致的原理如下所示:
  • 三極體升壓電路充放電講解及幾種常用電路
    三極體升壓電路和自舉電路是電源設計當中出現的比較頻繁的兩個概念。實際上,這兩個電路的含義是相同的,升壓電路就是自舉電路。升壓電路是一種利用電容放電和電源電壓的疊加,來使電壓得到提升的一種電路。本篇文章就將針對新手,簡述升壓電路的原理。  三極體升壓電路原理  首先,在講解原理之前先以一個例子來幫助大家進行理解。一個12V的電路,電路中有一個場效應管需要15V的驅動電壓,這個電壓怎麼弄出來?就是用自舉。
  • 三極體和MOS管的區別
    三極體比較便宜,用起來方便,常用在數字電路開關控制。 MOS管用於高頻高速電路,大電流場合,以及對基極或漏極控制電流比較敏感的地方。 MOS管不僅可以做開關電路,也可以做模擬放大,因為柵極電壓在一定範圍內的變化會引起源漏間導通電阻的變化。