運放噪聲——同相放大電路

2020-11-29 EDN電子設計技術

以之前對電阻噪聲的討論為基礎,這次讓我們一起學習放大器噪聲的一些基本知識。對於低噪聲應用來講,同相放大電路是最常見的,因此我們將主要探討同相運算放大器。 如圖1所示,將輸入源等效為一個電壓源與一個電阻串聯,我們知道源電阻RS的噪聲與其電阻平方根值是成正比例關係的(如圖2中的直線所示)。低噪聲放大器的設計目標是在電阻引入噪聲的基礎上,儘可能少地引入運放附加的噪聲。TKPednc

TKPednc

如圖1所示,放大器噪聲的等效模型為在一個輸入端串聯一個電壓噪聲,同時在兩端分別連接一個電流噪聲源。把電壓噪聲看作失調電壓的時變元件。同樣,電流噪聲是輸入偏置電流的時變元件,在每個輸入端各有一個。由於我們總能將反相輸入端的TKPednc
電流噪聲值降到最低,因此我們將忽略它。TKPednc

圖2給出了BJT做為輸入級的OPA209和JFET做為輸入級的OPA140這兩個運算放大器電路的總輸入參考噪聲的曲線。在25°C的時候,兩條曲線均與源電阻的噪聲成比例關係。對每個運算放大器而言,都通過平方和的均方根的方式來對三種噪聲源進行TKPednc
了一個求和。你也許會在某些運算放大器的數據手冊上看到這樣的圖形。TKPednc

當源電阻阻值減小時,它的詹森噪聲隨之減小(由阻值平方根值的倒數決定),在一定程度上,放大器的噪聲電壓將起到主導作用。總的噪聲將等於放大器的電壓噪聲。當源電阻阻值增加時,流過源電阻的電流噪聲將線性增加,而且會增加很快且最終會超過源電阻的噪聲。因此當源電阻阻值很高時,電流噪聲將會起主導作用。TKPednc

TKPednc

當源電阻值為2kΩ或者更低時,低噪聲放大器的設計會遇到最大的挑戰。較低的源電阻噪聲就要求放大器有很低的噪聲電壓。雙極性(BJT輸入)放大器通常在這方面比較擅長。還需注意的是,如圖2所示,在一個最佳位置, OPA209的總噪聲與源電阻噪聲幾乎相等。源阻最佳噪聲性能發生在RS=VN/IN。TKPednc

當源電阻阻值大約為20kΩ時,FET輸入的放大器幾乎不會引入任何的額外噪聲。只有當源電阻阻值達到幾個GΩ的時候,FET運算放大器的電流噪聲才會產生影響。可以遵循以下準則:當源電阻阻值小於10kΩ時,低噪聲的BJT放大器會產生較低的噪聲。當源電阻阻值大於10kΩ時,FET或者CMOS的運算放大器才會可能會有優勢。TKPednc

反饋網絡中的R1和R2也會產生一定的噪聲,但通常情況下是可以忽略的。當R1和R2的並聯值小於或者等於RS值的十分之一時,它們將僅僅使總噪聲的值產生小於10%(<1dB) 的增量。無論這些電阻的比值是多少,這都會是個事實。在圖2中,反饋網絡中元件的噪聲被設定為零。TKPednc

思考點:OPA140在10kΩ 之上有一個非常寬的電阻範圍,在這個範圍之內,噪聲性能很好。是否存在一種方法可以使得較低的源電阻值可以達到同樣的效果?TKPednc

閱讀原文,請訪問:edn.comTKPednc

查看更多請點擊:《看一個TI老工程師如何馴服精密放大器TKPednc

相關焦點

  • 還在為電路的莫名噪聲頭疼?運放噪聲100問幫你解困
    大部分放大器的噪聲特性被折合到輸入端,對於運算放大器數據手冊,這幾乎是默認的習慣算法。但對於其他類型的固定增益放大器(如差動放大器),噪聲可能被折合到輸出端。請注意,這種輸入噪聲會被放大器放大。例如,對於同相增益為10的放大器,輸出端的噪聲將是指標中給出的噪聲的10倍。一些電路配置的噪聲增益可能大於信號增益,反相配置就是一個很好的例子。信號增益為-1的反相配置,其噪聲增益實際上為2。
  • 運算放大器同相放大反相放大的區別
    電子電路運算放大器有同相輸入端和反相輸入端,輸入端的極性和輸出端是同一極性的就是同相放大器,而輸入端的極性和輸出端相反極性的則稱為反相放大器。圖一運放的同向端接地=0V,反向端和同向端虛短,所以也是0V,反向輸入端輸入電阻很高,虛斷,幾乎沒有電流注入和流出,那麼R1和R2相當於是串聯的,流過一個串聯電路中的每一隻組件的電流是相同的,即流過R1的電流和流過R2的電流是相同的。
  • 運放32個經典應用電路!
    (或者電路有問題)1.4 組合運放電路在一些應用中,組合運放可以用來節省成本和板上的空間,但是不可避免的引起相互之間的耦合,可以影響到濾波、直流偏置、噪聲和其他電路特性。設計者通常從獨立的功能原型開始設計,比如放大、直流偏置、濾波等等。在對每個單元模塊進行校驗後將他們聯合起來。
  • 運算放大器同相放大和反相放大的區別
    電子電路中的運算放大器,有同相輸入端和反相輸入端,輸入端的極性和輸出端是同一極性的就是同相放大器,而輸入端的極性和輸出端相反極性的則稱為反相放大器。
  • 運算放大器電路全集
    圖二R1 和R2 是等值的,通過電源允許的消耗和允許的噪聲來選擇,電容C1 是一個低通濾波器,用來減少從電源上傳來的噪聲。在有些應用中可以忽略緩衝運放。(或者電路有問題)1. 4 組合運放電路在一些應用中,組合運放可以用來節省成本和板上的空間,但是不可避免的引起相互之間的耦合,可以影響到濾波、直流偏置、噪聲和其他電路特性。設計者通常從獨立的功能原型開始設計,比如放大、直流偏置、濾波等等。在對每個單元模塊進行校驗後將他們聯合起來。除非特別說明,否則本文中的所有濾波器單元的增益都是 1。
  • 運算放大器中如何放大倍數的電路單元
    在實際電路中,通常結合反饋網絡共同組成某種功能模塊。它是一種帶有特殊耦合電路及反饋的放大器。其輸出信號可以是輸入信號加、減或微分、積分等數學運算的結果。由於早期應用於模擬計算機中,用以實現數學運算,故得名「運算放大器」。運放是一個從功能的角度命名的電路單元,可以由分立的器件實現,也可以實現在半導體晶片當中。隨著半導體技術的發展,大部分的運放是以單晶片的形式存在。
  • EDA365:運放電路知識:電壓反饋、常見指標、好壞判別……
    這種小電壓被開環增益放大,開環增益會強制輸出到其中一個電源電壓。在圖 3 右側的負反饋或閉環電路中,運算放大器輸出上的分壓器需要 200 mV 的輸出電壓,以便使反相和同相輸入相等。圖 3:開環(左)與負反饋(右)輸入電壓的放大稱為增益。它是反饋迴路中電阻值的函數。
  • 深度分析同相放大器的使用
    運算放大器OP是信號處理和信號變換中常用的元件,常用的有同相輸入和反相輸入兩種類型,典型電路如下本文引用地址:http://www.eepw.com.cn/article/201605/291131.htm
  • 學霸帶你飛 | 這些運放基本電路全解析,了解一下
    2.1 放大  放大電路有兩個基本類型:同相放大器和反相放大器。他們的交流耦合版本如圖三所示。對於交流電路,反向的意思是相角被移動180度。這種電路採用了耦合電容 ――Cin 。Cin被用來阻止電路產生直流放大,這樣電路就只會對交流產生放大作用。如果在直流電路中,Cin被省略,那麼就必須對直流放大進行計算。
  • 詳解運放的少量幾個確定因素 最終逐步過渡到電路中補償技術
    為了達到這個目標,本文首先討論了運放的少量幾個確定因素,最終逐步過渡到電路中經常使用但少有人理解的補償技術。本文還簡要介紹了補償網絡的嚴格定義,併集中討論了文獻中出現的可能衝突。前饋增益:相對於哪個節點?在討論運放補償之前,首先搞清楚運放的兩種最基本配置很重要,即同相(圖1A)和反相(圖1B)。已有大量文獻資料介紹過這兩種配置的閉環增益,並強調了閉環傳輸函數間的區別。
  • 【集成運算】同相放大器和反向放大器的選擇
    集成運算放大器可以接成同相放大也可以接成反相放大,那使用同相放大好還是反相放大好呢?
  • 儀表放大器電路原理、構成及電路設計
    它主要由兩級差分放大器電路構成。其中,運放A1,A2為同相差分輸入方式,同相輸入可以大幅度提高電路的輸入阻抗,減小電路對微弱輸入信號的衰減;差分輸入可以使電路只對差模信號放大,而對共模輸入信號只起跟隨作用,使得送到後級的差模信號與共模信號的幅值之比 (即共模抑制比CMRR)得到提高。
  • 【基礎】四運放LM324實用電路設計原理圖講解
    它的內部包含四組形式完全相同的運算放大器, 除電源共用外,四組運放相互獨立。每一組運算放大器可用圖 1 所示的符號來表示,它有 5 個引出腳,其中「+」、「-」為兩個信號輸入端,「V+」、「V-」為正、負電源端,「Vo」為輸出端。兩個信號輸入端中,Vi-(-)為反相輸入端,表示運放輸出端Vo的信號與該輸入端的位相反;Vi+(+)為同相輸入端,表示運放輸出端Vo的信號與該輸入端的相位相同。
  • 史上最全運放運算放大器知識講解
    高速型運算放大器:主要特點是具有高的轉換速率和寬的頻率響應。 低功耗型運算放大器:由於電子電路集成化的最大優點是能使複雜電路小型輕便,所以隨著可攜式儀器應用範圍的擴大,必須使用低電源電壓供電、低功率消耗的運算放大器相適用。
  • 運算放大器中,同相輸入與反向輸入的輸入阻抗的區別
    電子電路中的運算放大器,有同相輸入端和反相輸入端,輸入端的極性和輸出端是同一極性的就是同相放大器,而輸入端的極性和輸出端相反極性的則稱為反相放大器。   圖一運放的同向端接地=0V,反向端和同向端虛短,所以也是0V,反向輸入端輸入電阻很高,虛斷,幾乎沒有電流注入和流出,那麼R1和R2相當於是串聯的,流過一個串聯電路中的每一隻組件的電流是相同的,即流過R1的電流和流過R2的電流是相同的。
  • 同相加法器電路圖_反相加法器電路圖_運放加法器電路圖解析
    打開APP 同相加法器電路圖_反相加法器電路圖_運放加法器電路圖解析 發表於 2017-08-16 10:21:31   在電子學中
  • 運算放大器類型分析和經典電路分享
    電路推薦給大家;其應用領域已經延伸到汽車電子、通信、消費等各個領域,並將在未來技術方面扮演重要角色。  低功耗型運算放大器:  由於電子電路集成化的最大優點是能使複雜電路小型輕便,所以隨著可攜式儀器應用範圍的擴大,必須使用低電源電壓供電、低功率消耗的運算放大器相適用。  高壓大功率型運算放大器:運算放大器的輸出電壓主要受供電電源的限制。
  • 詳解運放及其補償技術
    在討論運放補償之前,首先搞清楚運放的兩種最基本配置很重要,即同相(圖1A)和反相(圖1B)。已有大量文獻資料介紹過這兩種配置的閉環增益,並強調了閉環傳輸函數間的區別。
  • 算清放大器電路噪聲RMS值的糊塗帳
    圖2.6 ADA4077噪聲與隔離度性能 將轉角頻率、1/f噪聲密度、寬帶噪聲密度代入式2-51、2-53,可以計算1Hz至1KHz的總噪聲RMS值為: 放大器電路的噪聲分析 在放大器工作電路中呈現的總噪聲是包括電流噪聲、電壓噪聲、電阻噪聲。
  • 單片機中運算放大器同相放大器配置
    但是,有時我們要做的只是增加信號的幅度,對於這些應用,我們擁有基本的運算放大器同相放大器配置。這種簡單的拓撲結構包括一個運算放大器和兩個電阻,其連接方式如下: 如果將正弦信號施加到輸入端子,則運算放大器將增加信號的幅度而不會產生180°的相位差。 通過將輸入信號連接至運算放大器的同相輸入端子來實現同相操作。增益幾乎完全由兩個電阻確定,這兩個電阻形成一個連接在運放輸出和其負輸入端子之間的反饋網絡。