從3個公式看輸入電容對運算放大器的危害

2020-12-15 EDN電子設計技術

在設計運算放大器時,是不可能不含輸入電容的,而運算放大器的印刷電路板上就包含更多了(圖1)。除了反饋電容器CF,其他所有電容都是雜散電容,它們會影響電路的穩定性。 例如,如果人為將這些電容設置為零,則可以用公式1求得環路增益。運算放大器的開環增益a包含幅度和相位成分,因此波特(對數穩定性)圖中會產生相移。波特圖上的臨界點是增益幅度等於零(增益=1)的點;180°與實際相移之間的差是相位裕量。Va2ednc

Va2ednc

Va2ednc

外部元件是電阻性的;令RG=RF,可以使環路增益降低6dB。這可以進一步增強穩定性,並使波特圖上的縱截距下降6dB,而極點位置保持不變。公式2給出了具有實際輸入電容(CF = 0)的反相放大器的環路增益,如圖1所示。Va2ednc

該輸入電容向環路增益增加了一個極點,並且當RG和RF的並聯值較小時,例如500Ω,極點位置位於f = 16.76 MHz處。該極點在其位置頻率的十分之一處引起的相移基本為零,因此輸入電容不會影響增益帶寬小於1.676 MHz的運算放大器。當運算放大器的增益帶寬超過1.676 MHz時,該極點引起的相移會增加至環路增益相移,並且運算放大器會產生過衝、振鈴、隨後振蕩,這取決於其相位響應。Va2ednc

增加RG和RF的並聯值會導致極點頻率降低(RF || RG = 5kΩ時,f = 0.1676 MHz)。因此,相移發生得越快,不穩定性問題就越嚴重。傳統的解決辦法是,使高頻運算放大器電路中的電阻較小,以最大程度地減小雜散輸入電容的影響。解決輸入電容問題的另一種方案是增加一個反饋電容CF。當電路中有輸入和反饋電容時,由公式3可以計算出其環路增益。Va2ednc

公式3中的零點始終先於極點; 因此,它的相移抵消了一部分負相移,直到極點起作用。通過使RFCF = RGCG,電路就可以獨立於兩個電容器。這種方法對閉環帶寬性能而言通常並不是最佳選擇,因此工程師選擇使用較小的CF值。通過優化電阻值、電容值和運算放大器帶寬可以獲得最佳的高頻性能,但在實驗室,2CF = CG是一個極好的起點。Va2ednc

反相運放和同相運放的穩定性是一樣的,因為穩定性與輸入無關。反相運算放大器的工作很像理論預測,但是同相運算放大器的抗共模能力較低,因為一部分輸入信號通過差分電容器(CD)饋入反相節點。抗共模性能的下降僅在高頻時才明顯。Va2ednc

原文刊登於ASPENCORE旗下EDN英文網站,參考連結:The perils of input capacitance,由Jenny Liao編譯。Va2ednc

相關焦點

  • 「可惡」的運算放大器電容負載
    這個附加電阻器可能會阻止運算放大器振蕩。本文引用地址:http://www.eepw.com.cn/article/263344.htm  問題是,「如果 CLOAD 超過產品說明書中推薦的運算放大器電容負載值時該怎麼辦?」
  • 一種直接測量運算放大器輸入差分電容的方法
    輸入電容可能會成為高阻抗和高頻運算放大器(op amp)應用的一個主要規格。值得注意的是,當光電二極體的結電容較小時,運算放大器的輸入電容會成為噪聲和帶寬問題的主導因素。運算放大器的輸入電容和反饋電阻在放大器的響應中產生一個極點,從而影響穩定性並增加較高頻率下的噪聲增益。
  • 這種直接測量運算放大器輸入差分電容的方法,你知道麼?
    值得注意的是,當光電二極體的結電容較小時,運算放大器的輸入電容會成為噪聲和帶寬問題的主導因素。 運算放大器的輸入電容和反饋電阻在放大器的響應中產生一個極點,從而影響穩定性並增加較高頻率下的噪聲增益。因此,穩定性和相位裕量可能會降低,輸出噪聲可能會增加。
  • 運算放大器輸入阻抗計算方法
    打開APP 運算放大器輸入阻抗計算方法 發表於 2017-11-18 10:16:37 ZID愈大,從信號源索取的電流愈小,放大電路所得到的輸入電壓Ui就越接近信號源電壓Us。   在TI的數據手冊中,運放TLC27L4的輸入電阻為:「high lnput impedance.。.10/12vΩtyp」,但並未給出輸入電容的值。
  • 米勒頻率補償:如何使用米勒電容進行運算放大器補償
    Sergio Franco之前的文章討論了運算放大器頻率補償和一種通過並聯電容的補償方法。目前最廣泛使用的頻率補償技術稱為米勒頻率補償,將在本文中進行介紹。什麼是米勒補償?電容的米勒效應在前一篇關於頻率補償的文章中,我們發現製作第一極點需要數十 納法的並聯電容。另一方面,米勒補償只需要皮法。米勒效應告訴你答案。米勒效應是指當電容器從輸入端連接到具有較大負增益的放大器輸出端時,等效電容的增加。對於電容情況,該概念在圖6中示出。
  • 高速運算放大器的3個PCB電路設計技巧
    它們就是滲入高速電路中隱藏的寄生電容和寄生電感。其中包括由封裝引腳和印製線過長形成的寄生電感;焊盤到地、焊盤到電源平面和焊盤到印製線之間形成的寄生電容;通孔之間的相互影響,以及許多其它可能的寄生效應。圖1(a)示出了一個典型的同相運算放大器原理圖。但是,如果考慮寄生效應的話,同樣的電路可能會變成圖1(b)那樣。
  • 解析如何正確地選擇運算放大器
    如果運用多個運算放大器,減少噪聲的一個方法是採用圖1所示的方案。該方法可以按因子減少輸出噪聲,這裡n是使用的放大器數量。對於LMV651而言,輸出噪聲將減少到大約12nV/。此外設計師必須考慮限制帶寬以使噪聲最小:設計師可以將一個小電容與反饋電阻並聯使用,藉此降低噪聲。  運算放大器的選擇也取決於其它的器件。
  • 運算放大器驅動容性負載要考慮的穩定因素
    我理解這些關於處理放大器輸出上的電容負載的例子。現在,輸入端的電容是否也值得關注? A:是的,運算放大器輸入端的容性負載會導致穩定問題。我們將通過幾個例子來說明。 當運算放大器用作電流輸出DAC的緩衝器/放大器時,一種非常常見且典型的應用是電流 - 電壓轉換。
  • 運算放大器基本電路大全
    3.2.3 雙T濾波器雙T 濾波器既可以用一個運放也可儀用兩個運放實現。他是建立在三個電阻和三個電容組成的無源網絡上的。這六個元件的匹配是臨界的,但幸運的是這仍是一個常容易的過程,這個網絡可以用同一值的電阻和同一值的電容組成。用圖中的公式就可以同時的將R3 和C3 計算出來。應該儘量選用同一批的元件,他們有非常相近的特性。
  • 運算放大器是個什麼鬼?
    通過之前的分享我們知道前置放大電路的作用是對音源輸入的聲音電信號進行放大,使其滿足後續處理的要求。在我們學過的元件中,三極體可以完成信號放大的要求,但由於其存在設計複雜、放大精度不易控制、放大增益較小等缺點,無法滿足音箱設計中低噪聲、高放大精度、高放大增益的要求,因此在實際的多媒體音箱中,我們使用運算放大器來擔任前置放大的任務。運算放大器是一種很常見的集成電路,其將若干個三極體、電阻、電容等元件集成到一個很小的晶片中,以特定的電路形式來完成放大任務。
  • 常用的運算放大器晶片有哪些
    運算放大器的工作原理   運算放大器具有兩個輸入端和一個輸出端,如圖3-1所示,其中標有「+」號的輸入端為「同相輸入端」而不能叫做正端),另一隻標有「一」號的輸入端為「反相輸入端」同樣也不能叫做負端,如果先後分別從這兩個輸入端輸入同樣的信號,則在輸出端會得到電壓相同但極性相反的輸出信號:輸出端輸出的信號與同相輸人端的信號同相
  • 採用業界最小的運算放大器設計麥克風電路
    本文圍繞高性能、成本敏感型電路系列文章的主題,為大家介紹體積極小、成本優化的駐極體電容式麥克風前置放大器的設計。該設計採用TLV9061,這是業界最小的運算放大器(op amp),採用0.8mm×0.8mm超小外形無引線(X2SON)封裝技術。駐極體麥克風放大器的電路配置如圖1所示。
  • 運算放大器電路全集
    1.1 電源供電和單電源供電所有的運算放大器都有兩個電源引腳,一般在資料中,它們的標識是VCC+和VCC-,但是有些時候它們的標識是VCC+和GND。這是因為有些數據手冊的作者企圖將這種標識的差異作為單電源運放和雙電源運放的區別。但是,這並不是說他們就一定要那樣使用――他們可能可以工作在其他的電壓下。
  • 這麼酷,採用極致小巧的運算放大器設計麥克風電路!
    本文圍繞高性能、成本敏感型電路的主題,為大家介紹體積極小、成本優化的駐極體電容式麥克風前置放大器的設計。該設計採用TLV9061,這是一枚極致小巧的運算放大器(op amp),採用0.8mm×0.8mm超小外形無引線(X2SON)封裝技術。
  • 不同差分放大器公式
    差分放大器放大其反相和非反相輸入端的電壓差 到目前為止,我們只使用其中一個運算放大器輸入連接到放大器,使用「反相」或「非反相」輸入端子放大單個輸入信號,另一個輸入接地。 但標準運算放大器有兩個輸入,反相和反相,我們還可以同時將信號連接到這兩個輸入,產生另一種常見類型的運算放大器電路,稱為差分放大器。
  • 選擇適合MEMS麥克風前置放大應用的運算放大器(二)
    有些運算放大器以軌到軌方式工作,這表示輸入或輸出電壓(取決於具體的參數)可以在不削波的情況下可以一直調到軌電壓。如果運算放大器不是軌到軌方式,數據表中將標示最大輸入和輸出電壓;請注意正負電壓最大值可能不同。信號的峰值輸出電壓顯然與前置放大器電路提供的增益有關。
  • 差分運算放大器驅動器實現高解析度ADC輸入過壓保護
    運算放大器,我們在本文中簡稱 為驅動器,在ADC的前端執行各種操作。驅動器處理緩衝 和幅值放大,將單端輸入轉換為差分輸出並連接到ADC的 差分輸入,通過其VOCM引腳上的電壓設置調節ADC的共模 輸入信號以及對信號進行濾波。本文討論如何有效保護ADC,不被運算放大器驅動器 引起的輸入過壓損害。
  • 學子專區:基本運算放大器配置
    目標:在本實驗中,我們將介紹一種有源電路——運算放大器(op amp),其某些特性(高輸入電阻、低輸出電阻和大差分增益)使它成為近乎理想的放大器,並且是很多電路應用中的有用構建模塊。在本實驗中,你將了解有源電路的直流偏置,並探索若干基本功能運算放大器電路。我們還將利用此實驗繼續發展使用實驗室硬體的技能。
  • 0.6μm CMOS工藝全差分運算放大器的設計
    本文設計的帶共模反饋的兩級高增益運算放大器結構分兩級,第一級為套筒式運算放大器,用以達到高增益的目的;第二級採用共源級電路結構,以增大輸出擺幅。另外還引入了共模反饋以提高共模抑制比。該方案不僅從理論上可滿足高增益、高共模抑制比的要求,而且通過了軟體仿真驗證。結果顯示,該結構的直流增益可達到80 dB,相位裕度達到80°,增益帶寬為74 MHz。
  • 如何高效選擇和使用精密運算放大器
    輸入補償電壓和輸入偏置電流都值得仔細研究: 輸入補償電壓指在運算放大器的兩個輸入端所施加的直流 (DC) 電壓,以獲得恆定的零電壓輸出。任何補償電壓都會被運算放大器的增益放大,從而導致輸出誤差,這與運算放大器的增益設置有關。 輸入偏置電流指運算放大器輸入端所通過的微小電流,用於正確偏置其內部電路。