中考數學複習指導 關於二次函數的解題方法

2020-12-17 中考網

  二次函數是初中數學中很重要的內容之一,也是歷年中考的熱點和難點。其中,關於函數解析式的確定是非常重要的題型。

  圖形變換包含平移、軸對稱、旋轉、位似四種變換,那麼二次函數的圖像在其圖形變化(平移、軸對稱、旋轉)的過程中,如何完成解析式的確定呢?解決此類問題的方法很多,關鍵在於解決問題的著眼點。筆者認為最好的方法是用頂點式的方法。因此解題時,先將二次函數解析式化為頂點式,確定其頂點坐標,再根據具體圖形變換的特點,確定變化後新的頂點坐標及a值。

  1、平移:二次函數圖像經過平移變換不會改變圖形的形狀和開口方向,因此a值不變。頂點位置將會隨著整個圖像的平移而變化,因此只要按照點的移動規律,求出新的頂點坐標即可確定其解析式。

  例1.將二次函數y=x2-2x-3的圖像向上平移2個單位,再向右平移1個單位,得到的新的圖像解析式為_____

  分析:將y=x2-2x-3化為頂點式y=(x-1)2-4,a值為1,頂點坐標為(1,-4),將其圖像向上平移2個單位,再向右平移1個單位,那麼頂點也會相應移動,其坐標為(2,-2),由於平移不改變二次函數的圖像的形狀和開口方向,因此a值不變,故平移後的解析式為y=(x-2)2-2。

  2、軸對稱:此圖形變換包括x軸對稱和關於y軸對稱兩種方式。

  二次函數圖像關於x軸對稱的圖像,其形狀不變,但開口方向相反,因此a值為原來的相反數。頂點位置改變,只要根據關於x軸對稱的點的坐標特徵求出新的頂點坐標,即可確定其解析式。

  二次函數圖像關於y軸對稱的圖像,其形狀和開口方向都不變,因此a值不變。但是頂點位置會改變,只要根據關於y軸對稱的點的坐標特徵求出新的頂點坐標,即可確定其解析式。

  例2.求拋物線y=x2-2x-3關於x軸以及y軸對稱的拋物線的解析式。

  分析:y=x2-2x-3=(x-1)2-4,a值為1,其頂點坐標為(1,-4),若關於x軸對稱,a值為-1,新的頂點坐標為(1,4),故解析式為y=-(x-1)2+4;若關於y軸對稱,a值仍為1,新的頂點坐標為(-1,-4),因此解析式為y=(x+1)2-4。

  3、旋轉:主要是指以二次函數圖像的頂點為旋轉中心,旋轉角為180°的圖像變換,此類旋轉,不會改變二次函數的圖像形狀,開口方向相反,因此a值會為原來的相反數,但頂點坐標不變,故很容易求其解析式。

  例3.將拋物線y=x2-2x+3繞其頂點旋轉180°,則所得的拋物線的函數解析式為________

  分析:y=x2-2x+3=(x-1)2+2中,a值為1,頂點坐標為(1,2),拋物線繞其頂點旋轉180°後,a值為-1,頂點坐標不變,故解析式為y=-(x-1)2+2。

   歡迎使用手機、平板等行動裝置訪問中考網,2020中考一路陪伴同行!>>點擊查看

相關焦點

  • 二次函數中考複習指導,學會求解二次函數代數應用相關問題
    二次函數作為初中數學的重要內容之一,在中考數學中,佔據著重要的地位。如它可以單獨命題,也可以二次函數相關知識內容為背景,結合其他數學知識內容,形成更為複雜的綜合問題,像函數綜合問題、二次函數與幾何綜合問題、二次函數的代數應用等等,這些題型都需要考生具有較強的知識應用能力,能把基礎基礎知識構築成知識網絡等。
  • 九年級數學,二次函數中矩形周長、面積最值問題,解題方法不同
    二次函數中矩形周長的最值問題與面積的最值問題,思考方法不一樣。矩形周長的最值問題一般藉助設點法表示出矩形的長和寬,然後利用公式得到周長,一般化簡後為二次函數,然後通過研究二次函數的性質得到最值。(3)先將l關於x的函數解析式配方,得到x的值,代入拋物線解析式即可得到使矩形MNHG的周長最小時點M的坐標。本題考查的是二次函數的綜合題,涉及的知識點有:拋物線的對稱軸公式,兩點之間的距離公式,矩形的周長公式,配方法求最值問題,綜合性較強。
  • 2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法
    中考是人生中一次比較重要的重大考試,中考不僅僅決定著去哪所高中學校上學,可能也決定著將來進入哪所大學深造。隨著高中入學比率的下降,進入高中的難度也相應變大。因此,中考值得同學們全力以赴,而不是盡力而為。
  • 2018中考數學:數學十大解題方法
    1、配方法   所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
  • 中考數學專題:二次函數題型及解題思路全面總結,附詳細解答過程
    二次函數在中教數學裡,屬於必考的熱點問題,試題通常包含三問,前兩問同學們得分往往比較簡單,但最後一問由於綜合性極高,屬於較難題,通常只有少部分同學會得分,因此這也是拉開同學之間分數的一個題型。今天,老師就為大家分享一套關於中考二次函數常考題型及常用解題思路的總結,讓同學們熟悉這部分的出題方式及解題思路。題型一:二次函數與特殊三角形的判定
  • 如果感覺中考數學簡單或難,那就試試二次函數有關的綜合題
    中考複習本身就是一項系統化的大工程,它需要考生付出大量的時間和精力,同時能承受中考帶來的壓力。在迷茫和希望中,考生要學會找到中考複習突破口,如當你不知道該怎麼開展複習工作的時候,那就學好二次函數。函數問題是初中數學的核心內容,而二次函數更是中考數學命題的熱點之一,全國很多地方的壓軸題都是以二次函數為知識背景進行設計。
  • 中考數學真題分析:二次函數與一次函數反比例函數綜合應用
    2.一次函數與反比例函數在實際生活中的應用非常廣泛,運用一次函數與反比例函數來解應用題成了近年來的中考命題亮點,許多省市中考試卷中的函數圖像信息題,設計新穎、貼近生活 、反映時代特徵,全面考查考生的數學素質.因此,在複習本節內容時要熟練掌握一次函數與反比例函數的圖像及其性質;能結合具體情境體會一次函數、反比例函數的意義;能運用一次函數與反比例函數的圖象信息,解決實際問題
  • 學會應用二次函數去解決實際問題,全面提高中考數學應試能力
    很多考生在複習期間,針對函數這一綜合知識內容,主要是集中在函數綜合問題、函數與幾何等相關綜合題型,往往容易忽視應用二次函數解決實際問題的題型。應用函數知識解決實際問題一直是中考數學的熱點,其中將二次函數知識與我們的學習生活、經濟發展、生產勞動等實際問題相結合的題型,在全國各地中考數學卷中更是倍受青睞。二次函數與一次函數、反比例函數組成初中數學的三大函數,而在歷年全國各地的中考數學試卷中,與二次函數有關的實際應用問題佔有一定分值。
  • 中考數學:二次函數壓軸題解題技巧,初中生必需的資料!
    以二次函數為載體去探討幾何圖形中的點、線、角、面積、相似、最值、恆等式證明等問題。二次函數的壓軸題可以分為兩種類型,一是幾何法,通常以幾何知識為載體,並應用全等、相似、勾股定理、平移、旋轉等知識解決,此法優點是運算量小、解法靈活,缺點是需要構建較多的輔助線,難以掌握;二是代數法,此法抓住函數的點、線、式的本質,由點列線,由線列式,此法優點是套路強,易掌握,缺點是運算量偏大,需要較強的運算能力。
  • 中考數學:二次函數壓軸題解題技巧大全!孩子啃透,中考無憂
    壓軸題,是一張試卷上後面出現的大題,在數學考試中,數學的壓軸題是很難的,也極具特點,綜合性很強,佔的分數也很多。一般來講,能夠將數學考試的壓軸題拿滿分的同學, 在一個班級裡也沒有多少人,因為難度實在是太高,以至於讓不少想考高分的同學倍感頭痛。
  • 壓軸題|中考二次函數壓軸題解題方法總結與歸納,晉級學霸就靠它
    初中數學二次函數壓軸題的經典做法總結。今天我們將通過例題的分析,總結二次函數壓軸題中出現的難題的解決方法。第一問比較簡單,根據已知的兩個點及對稱軸,這三個條件就可以求出二次函數的解析式,這也是二次函數中必須要掌握的基礎之一。
  • 九年級數學,二次函數中三角形周長的最值問題,解題思路很重要
    很多同學學習完「鉛錘法」後,按照解題套路能很快解決二次函數中三角形面積的最值。如果面積最值問題還沒有掌握的話,可以參考:2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法但是,冷不丁的遇到二次函數中三角形周長的最值問題
  • 中考專題複習:第13講二次函數的圖像與性質
    4.二次函數與一元二次方程以及不等式之間的關係5.二次函數圖像常見的變換思想方法基本思想:數形結合,從二次函數的圖像研究其開口方向、對稱軸、頂點坐標、增減性、最值及其圖像的平移變化,到利用二次函數圖像求解方程與方程組
  • 2019中考數學:二次函數專項練習題(附解析),考前認真練練!
    2019中考數學:二次函數專項練習題(附解析),考前認真練練!二次函數是學習初中數學函數的最後一個函數知識點,這也是最困難的知識點,也是考試必考知識點,並且大多都是以壓軸題的形式出現。一般檢查中二次函數的概念問題都屬於中檔題。這並不是很難。主要考查點的坐標,確定解析式、自變量的取值範圍等,很多學生都可以得分。二次函數的解析式,開口方向,對稱軸和頂點坐標是命題的熱點。拋物線的性質,平移等一般出現在選擇題、填空題。覆蓋範圍很廣,而且這些內容的綜合題一般較難,在解答題中出現。
  • 中考數學:九年級數學中考第一輪複習—二次函數的知識歸納
    二次函數作為各省市中考數學的「常客」 ,常常考察的難度較大,學生在複習起來也稍微吃力,本文主要從五個方面來回顧二次函數的相關知識,其中包括:①二次函數概念;②二次函數的圖象;③二次函數的解析式的確定;④二次函數的圖象的平移;⑤二次函數的圖像的對稱;希望可以引起學生和老師的重視,接下來我們也將進行詳細講解
  • 中考數學提分:初中二次函數知識點總結+考查重點+常考題型,收藏
    都是乾貨,中考數學二次函數提分攻略來了。初中二次函數知識點總結+考查重點+常考題型,值得大家收藏,慢慢學習。二次函數的考點及考查的範圍是比較廣泛的,值得大家畫更多的時間去複習和研究,應網友的要求給大家做全了二次函數的知識點總結,最重要的是重點和高頻考題的詳解。如果你是中考生,現在不知道該複習什麼?自己對這部分是否已經完全的掌握?不妨看完這篇文章,從這些常考題型中,自己是否能順利的做出來?
  • 高考數學函數複習方法:導數是解題關鍵
    導讀:在高中數學的學習當中,最讓考生們頭疼的知識點是數學函數問題,對於函數的題空間該如何解答呢?以下是於老師為考生們來解答函數的相關問題,面對高考數學函數不用再害怕,函數性質導數是解題關鍵。
  • 中考數學考點複習(十一)二次函數題型,老師:概念理解要到位
    二次函數定義很簡單,但卻是好多同學頭疼的根源,解決二次函數類題目,好多同學概念什麼的都懂,但就是把函數圖像和幾何集合起來出題時有一些難度,我們做題時要考慮的知識點因素很多,下面為大家梳理一下二次函數的一些基本概念和考題類型一,二次函數的三個表達式
  • 備戰2020中考數學複習十種解題方法
    1、配方法     所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。
  • 中考熱點|動點和二次函數結合的解題方法和典型題,完美逆襲
    我們都知道動點問題一直是中考壓軸題中的一個熱點,近幾年中考考查探究運動中的特殊性主要涉及:等腰三角形、直角三角形、相似三角形、平行四邊形、梯形、特殊角或其三角函數、線段或面積的最值等。今天唐老師整理了動點和二次函數相結合的解題方法和典型的題型,解題過程及方法的歸納總結一定要細品,趕緊讓孩子來做做吧,再晚可就真來不及了。首先,對於二次函數的解題思路的歸納與總結,不能只是死記硬背,一定要理解在解題過程中是如何運用的,當然和二次函數相關的方程和不等式的運用也是一大難點。