數據分析不得不知的七種回歸分析技術

2020-12-13 人民網天津視窗

回歸分析技術是一種非常重要的數據分析方法,有著廣泛的應用,能夠解決目標變量為連續的預測分析問題。

什麼是回歸分析?

回歸分析是一種預測性的建模技術,它研究的是因變量(目標)和自變量(預測器)之間的關係。這種技術通常用於預測分析,時間序列模型以及發現變量之間的因果關係。例如,司機的魯莽駕駛與道路交通事故數量之間的關係,最好的研究方法就是回歸。

回歸分析是建模和分析數據的重要工具。在這裡,我們使用曲線/線來擬合這些數據點,在這種方式下,從曲線或線到數據點的距離差異最小。我會在接下來的部分詳細解釋這一點。

我們為什麼使用回歸分析?

如上所述,回歸分析估計了兩個或多個變量之間的關係。下面,讓我們舉一個簡單的例子來理解它:

比如說,在當前的經濟條件下,你要估計一家公司的銷售額增長情況。現在,你有公司最新的數據,這些數據顯示出銷售額增長大約是經濟增長的2.5倍。那麼使用回歸分析,我們就可以根據當前和過去的信息來預測未來公司的銷售情況。

使用回歸分析的好處良多。具體如下:

它表明自變量和因變量之間的顯著關係;

它表明多個自變量對一個因變量的影響強度。

回歸分析也允許我們去比較那些衡量不同尺度的變量之間的相互影響,如價格變動與促銷活動數量之間聯繫。這些有利於幫助市場研究人員,數據分析人員以及數據科學家排除並估計出一組最佳的變量,用來構建預測模型。

我們有多少種回歸技術?

有各種各樣的回歸技術用於預測。這些技術主要有三個度量(自變量的個數,因變量的類型以及回歸線的形狀)。我們將在下面的部分詳細討論它們。

對於那些有創意的人,如果你覺得有必要使用上面這些參數的一個組合,你甚至可以創造出一個沒有被使用過的回歸模型。但在你開始之前,先了解如下最常用的回歸方法:

1.Linear Regression線性回歸

它是最為人熟知的建模技術之一。線性回歸通常是人們在學習預測模型時首選的技術之一。在這種技術中,因變量是連續的,自變量可以是連續的也可以是離散的,回歸線的性質是線性的。

線性回歸使用最佳的擬合直線(也就是回歸線)在因變量(Y)和一個或多個自變量(X)之間建立一種關係。

用一個方程式來表示它,即Y=a+b*X+e,其中a表示截距,b表示直線的斜率,e是誤差項。這個方程可以根據給定的預測變量(X)來預測目標變量的值。

一元線性回歸和多元線性回歸的區別在於,多元線性回歸有(>1)個自變量,而一元線性回歸通常只有1個自變量。現在的問題是「我們如何得到一個最佳的擬合線呢?」。

如何獲得最佳擬合線(a和b的值)?

這個問題可以使用最小二乘法輕鬆地完成。最小二乘法也是用於擬合回歸線最常用的方法。對於觀測數據,它通過最小化每個數據點到線的垂直偏差平方和來計算最佳擬合線。因為在相加時,偏差先平方,所以正值和負值沒有抵消。 我們可以使用R-square指標來評估模型性能。想了解這些指標的詳細信息,可以閱讀:模型性能指標Part 1,Part 2.

要點:1.自變量與因變量之間必須有線性關係 2.多元回歸存在多重共線性,自相關性和異方差性。 3.線性回歸對異常值非常敏感。它會嚴重影響回歸線,最終影響預測值。 4.多重共線性會增加係數估計值的方差,使得在模型輕微變化下,估計非常敏感。結果就是係數估計值不穩定 5.在多個自變量的情況下,我們可以使用向前選擇法,向後剔除法和逐步篩選法來選擇最重要的自變量。

2.Logistic Regression邏輯回歸

邏輯回歸是用來計算「事件=Success」和「事件=Failure」的概率。當因變量的類型屬於二元(1 / 0,真/假,是/否)變量時,我們就應該使用邏輯回歸。這裡,Y的值從0到1,它可以用下方程表示。 odds= p/ (1-p) = probability of event occurrence / probability of not event occurrenceln(odds) = ln(p/(1-p))logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3....+bkXk

上述式子中,p表述具有某個特徵的概率。你應該會問這樣一個問題:「我們為什麼要在公式中使用對數log呢?」。

因為在這裡我們使用的是的二項分布(因變量),我們需要選擇一個對於這個分布最佳的連結函數。它就是Logit函數。在上述方程中,通過觀測樣本的極大似然估計值來選擇參數,而不是最小化平方和誤差(如在普通回歸使用的)。

要點:1.它廣泛的用於分類問題。 2.邏輯回歸不要求自變量和因變量是線性關係。它可以處理各種類型的關係,因為它對預測的相對風險指數OR使用了一個非線性的log轉換。 3.為了避免過擬合和欠擬合,我們應該包括所有重要的變量。有一個很好的方法來確保這種情況,就是使用逐步篩選方法來估計邏輯回歸。 4.它需要大的樣本量,因為在樣本數量較少的情況下,極大似然估計的效果比普通的最小二乘法差。 5.自變量不應該相互關聯的,即不具有多重共線性。然而,在分析和建模中,我們可以選擇包含分類變量相互作用的影響。 6.如果因變量的值是定序變量,則稱它為序邏輯回歸。 7.如果因變量是多類的話,則稱它為多元邏輯回歸。

3.Polynomial Regression多項式回歸

對於一個回歸方程,如果自變量的指數大於1,那麼它就是多項式回歸方程。如下方程所示:y=a+b*x^2

在這種回歸技術中,最佳擬合線不是直線。而是一個用於擬合數據點的曲線。

重點:雖然會有一個誘導可以擬合一個高次多項式並得到較低的錯誤,但這可能會導致過擬合。你需要經常畫出關係圖來查看擬合情況,並且專注於保證擬合合理,既沒有過擬合又沒有欠擬合。

下面是一個圖例,可以幫助理解:

明顯地向兩端尋找曲線點,看看這些形狀和趨勢是否有意義。更高次的多項式最後可能產生怪異的推斷結果。

4.Stepwise Regression逐步回歸

在處理多個自變量時,我們可以使用這種形式的回歸。在這種技術中,自變量的選擇是在一個自動的過程中完成的,其中包括非人為操作。

這一壯舉是通過觀察統計的值,如R-square,t-stats和AIC指標,來識別重要的變量。逐步回歸通過同時添加/刪除基於指定標準的協變量來擬合模型。

下面列出了一些最常用的逐步回歸方法: - 標準逐步回歸法做兩件事情。即增加和刪除每個步驟所需的預測。 - 向前選擇法從模型中最顯著的預測開始,然後為每一步添加變量。 - 向後剔除法與模型的所有預測同時開始,然後在每一步消除最小顯著性的變量。

這種建模技術的目的是使用最少的預測變量數來最大化預測能力。這也是處理高維數據集的方法之一。

5.Ridge Regression嶺回歸

嶺回歸分析是一種用於存在多重共線性(自變量高度相關)數據的技術。在多重共線性情況下,儘管最小二乘法(OLS)對每個變量很公平,但它們的差異很大,使得觀測值偏移並遠離真實值。嶺回歸通過給回歸估計上增加一個偏差度,來降低標準誤差。

上面,我們看到了線性回歸方程。還記得嗎?它可以表示為: y=a+b x這個方程也有一個誤差項。完整的方程是: y=a+b x+e (error term), [error term is the value needed to correct for a prediction error between the observed and predicted value] => y=a+y= a+ b1x1+ b2x2+....+e, for multiple independent variables.

在一個線性方程中,預測誤差可以分解為2個子分量。一個是偏差,一個是方差。預測錯誤可能會由這兩個分量或者這兩個中的任何一個造成。在這裡,我們將討論由方差所造成的有關誤差。

嶺回歸通過收縮參數λ(lambda)解決多重共線性問題。看下面的公式

在這個公式中,有兩個組成部分。第一個是最小二乘項,另一個是β2(β-平方)的λ倍,其中β是相關係數。為了收縮參數把它添加到最小二乘項中以得到一個非常低的方差。

要點:1.除常數項以外,這種回歸的假設與最小二乘回歸類似; 2.它收縮了相關係數的值,但沒有達到零,這表明它沒有特徵選擇功能 3.這是一個正則化方法,並且使用的是L2正則化。

6.Lasso Regression套索回歸

它類似於嶺回歸,Lasso (Least Absolute Shrinkage and Selection Operator)也會懲罰回歸係數的絕對值大小。此外,它能夠減少變化程度並提高線性回歸模型的精度。看看下面的公式:

Lasso 回歸與Ridge回歸有一點不同,它使用的懲罰函數是絕對值,而不是平方。這導致懲罰(或等於約束估計的絕對值之和)值使一些參數估計結果等於零。使用懲罰值越大,進一步估計會使得縮小值趨近於零。這將導致我們要從給定的n個變量中選擇變量。

要點:1.除常數項以外,這種回歸的假設與最小二乘回歸類似; 2.它收縮係數接近零(等於零),這確實有助於特徵選擇; 3.這是一個正則化方法,使用的是L1正則化;

如果預測的一組變量是高度相關的,Lasso 會選出其中一個變量並且將其它的收縮為零。

7.ElasticNet回歸

ElasticNet是Lasso和Ridge回歸技術的混合體。它使用L1來訓練並且L2優先作為正則化矩陣。當有多個相關的特徵時,ElasticNet是很有用的。Lasso 會隨機挑選他們其中的一個,而ElasticNet則會選擇兩個。

Lasso和Ridge之間的實際的優點是,它允許ElasticNet繼承循環狀態下Ridge的一些穩定性。

要點:1.在高度相關變量的情況下,它會產生群體效應; 2.選擇變量的數目沒有限制; 3.它可以承受雙重收縮。

除了這7個最常用的回歸技術,你也可以看看其他模型,如Bayesian、Ecological和Robust回歸。

如何正確選擇回歸模型?

當你只知道一個或兩個技術時,生活往往很簡單。我知道的一個培訓機構告訴他們的學生,如果結果是連續的,就使用線性回歸。如果是二元的,就使用邏輯回歸!然而,在我們的處理中,可選擇的越多,選擇正確的一個就越難。類似的情況下也發生在回歸模型中。

在多類回歸模型中,基於自變量和因變量的類型,數據的維數以及數據的其它基本特徵的情況下,選擇最合適的技術非常重要。以下是你要選擇正確的回歸模型的關鍵因素:

1.數據探索是構建預測模型的必然組成部分。在選擇合適的模型時,比如識別變量的關係和影響時,它應該首選的一步。

2.比較適合於不同模型的優點,我們可以分析不同的指標參數,如統計意義的參數,R-square,Adjusted R-square,AIC,BIC以及誤差項,另一個是Mallows』 Cp準則。這個主要是通過將模型與所有可能的子模型進行對比(或謹慎選擇他們),檢查在你的模型中可能出現的偏差。

3.交叉驗證是評估預測模型最好額方法。在這裡,將你的數據集分成兩份(一份做訓練和一份做驗證)。使用觀測值和預測值之間的一個簡單均方差來衡量你的預測精度。

4.如果你的數據集是多個混合變量,那麼你就不應該選擇自動模型選擇方法,因為你應該不想在同一時間把所有變量放在同一個模型中。

5.它也將取決於你的目的。可能會出現這樣的情況,一個不太強大的模型與具有高度統計學意義的模型相比,更易於實現。

6.回歸正則化方法(Lasso,Ridge和ElasticNet)在高維和數據集變量之間多重共線性情況下運行良好。

本文轉自數據人

原文連結:http://t.cn/RcNRPzI

相關焦點

  • 七種回歸分析方法,個個經典
    什麼是回歸分析? 回歸分析是一種預測性的建模技術,它研究的是因變量(目標)和自變量(預測器)之間的關係。這種技術通常用於預測分析,時間序列模型以及發現變量之間的因果關係。例如,司機的魯莽駕駛與道路交通事故數量之間的關係,最好的研究方法就是回歸。
  • 數據分析技術:數據關聯性分析綜述
    基礎準備數據關聯性分析的主要技術包括:相關性分析、回歸分析、交叉表卡方分析等。
  • 你應該掌握的七種回歸技術
    【編者按】回歸分析是建模和分析數據的重要工具。本文解釋了回歸分析的內涵及其優勢,重點總結了應該掌握的線性回歸、邏輯回歸、多項式回歸、逐步回歸、嶺回歸、套索回歸、ElasticNet回歸等七種最常用的回歸技術及其關鍵要素,最後介紹了選擇正確的回歸模型的關鍵因素。什麼是回歸分析?
  • 七種常用回歸技術,如何正確選擇回歸模型?
    本文解釋了回歸分析的內涵及其優勢,重點總結了應該掌握的線性回歸、邏輯回歸、多項式回歸、逐步回歸、嶺回歸、套索回歸、ElasticNet回歸等七種最常用的回歸技術及其關鍵要素,最後介紹了選擇正確的回歸模型的關鍵因素。什麼是回歸分析?回歸分析是一種預測性的建模技術,它研究的是因變量(目標)和自變量(預測器)之間的關係。
  • 怎麼做數據分析?數據分析的這些環節你不得不知
    很多剛開始做數據分析的朋友,不知道數據分析該如何下手,更不知道一個完整的數據分析流程有哪些環節。數據分析的流程比較簡單,主要包括以下六個環節:明確分析目的、數據獲取、數據處理、數據分析、數據可視化、結論與建議。一、明確數據分析的目的做事都是有目的的,數據分析也是。
  • 16種常用的數據分析方法-回歸分析
    4、其他回歸方法 非線性回歸、有序回歸、Probit回歸、加權回歸等 之所以有不同類型的回歸分析,是由於原始分析數據X、Y變量的數據類型不同,不同類型的數據在進行回歸分析時,要採用合適的回歸分析類型。
  • python數據分析--回歸函數及線性回歸分析
    2.工具數據分析有很多成熟的工具可以使用,如R、python、spss等。此處我們選用python進行分析。首先,我們需要安裝並導入python數據分析常用的庫。__version__)3.線性回歸分析Y= aX + b + e ,e表示殘差。
  • 我用Excel發現了數據分析的本質:回歸分析
    最近很多人都問我,為什麼感覺數據分析越學越亂,經常是學了一大堆名詞,真正遇到問題的時候卻更多是直接套用模型,很難將這些理論聯繫起來。這其實就回歸到了一個至關重要的問題:數據分析的本質是什麼?數據分析的本質其實絕大多數的數據分析問題,都可以歸納為一個問題:相關性問題。相關性分析是數據統計學中的基礎思想,主要就是為了探究數據之間是否具有關聯性,簡單說就是X與Y或者X與Y、Z等之間的變化是否有關聯。
  • Excel數據分析篇:線性回歸
    通過數據間相關性分析的研究,進一步建立自變量(i=1,2,3,…)與因變量Y之間的回歸函數關係,即回歸分析模型,從而預測數據的發展趨勢。 2、分類按照涉及的變量的多少,分為一元回歸和多元回歸分析;按照因變量的多少,可分為簡單回歸分析和多重回歸分析;按照自變量和因變量之間的關係類型,可分為線性回歸分析和非線性回歸分析。
  • 每個數據科學人都應該知道的7種回歸技術
    每種形式的回歸都有其自身的重要性和最適合應用的特定場景。在本文中,我會以簡單的方式解釋了數據科學中最常用的7種回歸形式。通過這篇文章,我也希望人們能夠對回歸的廣度有一個概念,而不是僅僅對他們遇到的每個問題應都用線性/邏輯回歸,並希望他們能夠使用這麼多的回歸技術!如果您是數據科學的新手,並且正在尋找一個開始學習的地方,那麼「 數據科學 」課程是一個很好的起點!
  • Python數據分析|線性回歸
    Python數據分析學習筆記,今天分享下利用Python對業務進行數據預處理,並利用線性回歸進行數據預測。壹 數據導入Python下載及環境配置這裡就不贅述了哈,網上教程非常多,我們直接一開始就進入乾貨,打它一個開門見山。①導入Python常用數據分析庫:常用的numpy、pandas、matplotlib先導入。
  • 大數據分析python自回歸模型
    那是因為我們在此類數據中遇到自相關。換句話說,通過了解當今產品的價格,我們經常可以對明天的產品價值做出大致的預測。因此,在大數據分析python自回歸模型中,我們將討論一個反映這種相關性的模型。–自回歸模型。
  • 數據分析不知如何下手?7大流程讓你變成數據分析老司機
    數據分析可以說是數據時代各個職場人士必須掌握的工作技能,尤其對於從事數據類工作的小夥伴來說顯得尤為重要。但是面對雜亂的數據,不少人很難下手,不知該如何進行分析、不知該從哪些角度分析些什麼。那麼,今天筆者結合自己在學習及工作過程中的數據分析經驗著重向大家分享一下:在數據分析過程中應大致遵循怎樣的流程步驟(本文介紹的步驟偏向於數據分析師崗位類的商務業務數據分析流程),以便更好地進行數據分析,大的方面來說就是七步走戰略:
  • 線性回歸-如何對數據進行回歸分析
    線性回歸模型的目的就是想找出一種特徵集與目標集之間的線性關係,使得我們可以通過已知的特徵數據預測出目標數據。在經過了1078 份數據的分析之後,最終他得出結論:人類的身高維持在相對穩定的狀態,他稱之為回歸效應,並給出了歷史上第一個回歸公式:公式中的 Y 代表子代身高,X 代表父代身高,單位為英寸。
  • 數據分析技術:決策樹分析;機器學習入門模型
    ,包括聚類分析、判別分析和邏輯回歸分析,加上今天將要介紹的決策樹分析,這些分類方法之間有什麼區別呢? 分類方法對比需要明確,聚類分析、判別分析、邏輯回歸和決策樹這些分類方法,它們的分類對象是個案(研究對象),比如人、家庭、公司或國家等,這些分類對象都有一個共同點,那就是它們身上的標籤或屬性是多維和複雜的。
  • 使用Python玩轉數據分析(3):刀具磨損回歸分析案例
    通過刀具磨損回歸分析案例,藉助EXECL分析工具,講述數據分析的結果表達——數據圖表的使用。
  • 「回歸分析」知識點梳理,數據業務的決策就靠它了!
    文章源於網絡「正確問題的近似答案要比近似問題的精確答案更有價值」這正是回歸分析所追求的目標。它是最常用的預測建模技術之一,有助於在重要情況下做出更明智的決策。在本文中,我們將討論什麼是回歸分析,它是如何工作的。
  • 機器學習:回歸分析——多元線性回歸分析
    所以相比一元線性回歸,多元線性回歸的實際意義更大。本節我們將使用來自UIC數據集中的能效數據集(ENB2012_data.xlsx)進行演示,探索如何使用Python對數據集進行多元回歸分析。數據集中的自變量有8個,即X1~X8,因變量為Y1(供熱負荷能效)與Y2(供冷負荷能效),實例將分析8個自變量和供熱負荷能效(Y1)之間的回歸模型。
  • 數據分析崗位的「真香」高薪職位盤點來了!還有一點你不得不知……
    例如,通過分析新用戶的獲取和老用戶的留存、復購數據,從整體了解電商用戶結構,以及用戶生命周期價值,來洞察對「人」的了解;通過分析銷售額、價格分析、銷量排名最高和最低的商品數據、以及相關關聯因素的歸因,是對「貨」產品結構的把控,為產品運營尋找最佳建議;而對於階段性市場份額、利潤率、增長率、促銷活動等數據的分析和對比,能夠了解到整體運營的情況和未來市場的前景
  • 如何用EXCEL線性回歸分析法快速做數據分析預測
    回歸分析法,即二元一次線性回歸分析預測法先以一個小故事開始本文的介紹。令我吃驚的是,本人以完整的數據推算做依據,做出的報告結果居然與僅入職數周,數據不齊全的Edwin制定的報告結果吻合度達到99%以上。仍清楚記得,筆者曾用得是標準的周轉天數計算公式反推法,而Edwin用的正是本文重點介紹的二元一次線性回歸分析法。二元一次線性回歸分析法是一種數據分析模型。