革蘭氏陽性菌細胞壁結構獲解析
作者:
小柯機器人發布時間:2020/4/30 21:05:15
英國謝菲爾德大學J. K. Hobbs和S. J. Foster研究團隊合作取得一項新成果。他們成功解析了革蘭氏陽性菌細胞壁的結構。該項研究成果在線發表在2020年4月29日出版的《自然》上。
研究人員以活細胞和純化的肽聚糖為底物利用原子力顯微鏡對形態不同的金黃色葡萄球菌和枯草芽孢桿菌進行了研究。活細胞成熟表面的特徵是大孔(直徑最大60納米)、深孔(最大23納米)構成的肽聚糖無序凝膠。由更多新生成分組成的內部肽聚糖表面要緻密得多,聚糖鏈間距通常小於7 nm。
內表面結構取決於位置。枯草芽孢桿菌的圓柱體具有密集的周向取向;而在金黃色葡萄球菌和分隔隔中,肽聚糖均密集,但方向隨機。通過解析分子結構增強了人類對細胞包膜的機械性質和其作為環境界面功能的認知,同時也提供了與傳統結構生物學方法互補的信息。
據介紹,細菌細胞壁的主要結構成分是肽聚糖,這對細菌生存至關重要,同時其合成途徑也是抗生素的靶點。肽聚糖是由聚糖鏈組成的單個大分子,該聚糖鏈通過圍繞細胞的肽側支交聯,從而防止內部膨脹。在革蘭氏陽性細菌中,肽聚糖的厚度可達數十納米,通常被認為是為細胞提供機械強度的均勻結構。
附:英文原文
Title: The architecture of the Gram-positive bacterial cell wall
Author: L. Pasquina-Lemonche, J. Burns, R. D. Turner, S. Kumar, R. Tank, N. Mullin, J. S. Wilson, B. Chakrabarti, P. A. Bullough, S. J. Foster, J. K. Hobbs
Issue&Volume: 2020-04-29
Abstract: The primary structural component of the bacterial cell wall is peptidoglycan, which is essential for viability and the synthesis of which is the target for crucial antibiotics1,2. Peptidoglycan is a single macromolecule made of glycan chains crosslinked by peptide side branches that surrounds the cell, acting as a constraint to internal turgor1,3. In Gram-positive bacteria, peptidoglycan is tens of nanometres thick, generally portrayed as a homogeneous structure that provides mechanical strength4,5,6. Here we applied atomic force microscopy7,8,9,10,11,12 to interrogate the morphologically distinct Staphylococcus aureus and Bacillus subtilis species, using live cells and purified peptidoglycan. The mature surface of live cells is characterized by a landscape of large (up to 60 nm in diameter), deep (up to 23 nm) pores constituting a disordered gel of peptidoglycan. The inner peptidoglycan surface, consisting of more nascent material, is much denser, with glycan strand spacing typically less than 7 nm. The inner surface architecture is location dependent; the cylinder of B. subtilis has dense circumferential orientation, while in S. aureus and division septa for both species, peptidoglycan is dense but randomly oriented. Revealing the molecular architecture of the cell envelope frames our understanding of its mechanical properties and role as the environmental interface13,14, providing information complementary to traditional structural biology approaches.
DOI: 10.1038/s41586-020-2236-6
Source: https://www.nature.com/articles/s41586-020-2236-6