年終盤點:2020年睡眠和生物節律領域十大研究突破

2021-03-06 神經科學臨床和基礎

1. Nature—哈佛大學新發現!!未考慮晝夜節律可能是神經保護藥物在人類卒中臨床試驗中失敗的原因

Abstract

Neuroprotectant strategies that haveworked in rodent models of stroke have failed to provide protection in clinicaltrials. Here we show that the opposite circadian cycles in nocturnal rodentsversus diurnal humans1,2 may contribute to this failure in translation. Wetested three independent neuroprotective approaches-normobaric hyperoxia, thefree radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and theN-methyl-D-aspartic acid (NMDA) antagonist MK801-in mouse and rat models offocal cerebral ischaemia. All three treatments reduced infarction in day-time(inactive phase) rodent models of stroke, but not in night-time (active phase)rodent models of stroke, which match the phase (active, day-time) during whichmost strokes occur in clinical trials. Laser-speckle imaging showed that thepenumbra of cerebral ischaemia was narrower in the active-phase mouse modelthan in the inactive-phase model. The smaller penumbra was associated with alower density of terminal deoxynucleotidyl transferase dUTP nick end labelling(TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. Whenwe induced circadian-like cycles in primary mouse neurons, deprivation ofoxygen and glucose triggered a smaller release of glutamate and reactive oxygenspecies, as well as lower activation of apoptotic and necroptotic mediators, in'active-phase' than in 'inactive-phase' rodent neurons. αPBN and MK801 reducedneuronal death only in 'inactive-phase' neurons. These findings suggest thatthe influence of circadian rhythm on neuroprotection must be considered fortranslational studies in stroke and central nervous system diseases.

參考文獻:Potential circadian effects on translational failure for neuroprotection. Nature. 2020 Jun;582(7812):395-398.

 

2. Nature—飽食和飢餓狀態的記憶鞏固機制不同!!果蠅的飽食和飢餓狀態決定了其記憶的鞏固是否需要睡眠

Abstract

Sleep remains a major mystery ofbiology, with little understood about its basic function. One of the mostcommonly proposed functions of sleep is the consolidation of memory1-3.However, as conditions such as starvation require the organism to be awake andactive4, the ability to switch to a memory consolidation mechanism that is notcontingent on sleep may confer an evolutionary advantage. Here we identify anadaptive circuit-based mechanism that enables Drosophila to formsleep-dependent and sleep-independent memory. Flies fed after appetitiveconditioning needed increased sleep for memory consolidation, but flies starvedafter training did not require sleep to form memories. Memory in fed flies ismediated by the anterior-posterior α'/β' neurons of the mushroom body, whilememory under starvation is mediated by medial α'/β' neurons. Sleep-dependent andsleep-independent memory rely on distinct dopaminergic neurons andcorresponding mushroom body output neurons. However, sleep and memory arecoupled such that mushroom body neurons required for sleep-dependent memoryalso promote sleep. Flies lacking Neuropeptide F display sleep-dependent memoryeven when starved, suggesting that circuit selection is determined by hunger.This plasticity in memory circuits enables flies to retain essentialinformation in changing environments.

參考文獻:Availability of food determines the need for sleep in memory consolidation. Nature. 2020 Dec2.

 

3. Nature—你如何記住你的同伴?海馬CA2尖波漣漪重激活並促進社會性記憶

Abstract

The consolidation of spatial memorydepends on the reactivation ('replay') of hippocampal place cells that wereactive during recent behaviour. Such reactivation is observed during sharp-waveripples (SWRs)-synchronous oscillatory electrical events that occur duringnon-rapid-eye-movement (non-REM) sleep1-8 and whose disruption impairs spatialmemory3,5,6,8. Although the hippocampus also encodes a wide range ofnon-spatial forms of declarative memory, it is not yet known whether SWRs arenecessary for such memories. Moreover, although SWRs can arise from either theCA3 or the CA2 region of the hippocampus7,9, the relative importance of SWRsfrom these regions for memory consolidation is unknown. Here we examine therole of SWRs during the consolidation of social memory-the ability of an animalto recognize and remember a member of the same species-focusing on CA2 becauseof its essential role in social memory10-12. We find that ensembles of CA2pyramidal neurons that are active during social exploration of previouslyunknown conspecifics are reactivated during SWRs. Notably, disruption orenhancement of CA2 SWRs suppresses or prolongs social memory, respectively.Thus, SWR-mediated reactivation of hippocampal firing related to recentexperience appears to be a general mechanism for binding spatial, temporal andsensory information into high-order memory representations, including socialmemory.

參考文獻:Hippocampal CA2 sharp-wave ripplesreactivate and promote social memory. Nature. 2020 Nov;587(7833):264-269.

 

4. Science—睡眠研究重大突破~興奮性神經元抑制覺醒!!基底前腦穀氨酸能神經元通過釋放腺苷以抑制覺醒?

Abstract

Sleep and wakefulness arehomeostatically regulated by a variety of factors, including adenosine.However, how neural activity underlying the sleep-wake cycle controls adenosinerelease in the brain remains unclear. Using a newly developed geneticallyencoded adenosine sensor, we found an activity-dependent rapid increase in theconcentration of extracellular adenosine in mouse basal forebrain (BF), acritical region controlling sleep and wakefulness. Although the activity ofboth BF cholinergic and glutamatergic neurons correlated with changes in theconcentration of adenosine, optogenetic activation of these neurons atphysiological firing frequencies showed that glutamatergic neurons contributedmuch more to the adenosine increase. Mice with selective ablation of BFglutamatergic neurons exhibited a reduced adenosine increase and impaired sleephomeostasis regulation. Thus, cell type-specific neural activity in the BFdynamically controls sleep homeostasis.

參考文獻:Regulation of sleep homeostasismediator adenosine by basal forebrain glutamatergic neurons. Science. 2020 Sep4;369(6508):eabb0556.

 

5. Nature—GABA是興奮性的!!高張鹽水通過OVLT-SCN(興奮性GABAergic)通路調控時鐘和體溫

Abstract

The suprachiasmatic nucleus (SCN)serves as the body's master circadian clock that adaptively coordinates changesin physiology and behaviour in anticipation of changing requirements throughoutthe 24-h day-night cycle1-4. For example, the SCN opposes overnight adipsia bydriving water intake before sleep5,6, and by driving the secretion ofanti-diuretic hormone7,8 and lowering body temperature9,10 to reduce water lossduring sleep11. These responses can also be driven by central osmo-sodiumsensors to oppose an unscheduled rise in osmolality during the activephase12-16. However, it is unknown whether osmo-sodium sensors requireclock-output networks to drive homeostatic responses. Here we show that asystemic salt injection (hypertonic saline) given at Zeitgeber time 19-a timeat which SCNVP (vasopressin) neurons are inactive-excited SCNVP neurons anddecreased non-shivering thermogenesis (NST) and body temperature. The effectsof hypertonic saline on NST and body temperature were prevented by chemogeneticinhibition of SCNVP neurons and mimicked by optogenetic stimulation of SCNVPneurons in vivo. Combined anatomical and electrophysiological experimentsrevealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT)neurons expressing glutamic acid decarboxylase (OVLTGAD) relay this informationto SCNVP neurons via an excitatory effect of γ-aminobutyric acid (GABA).Optogenetic activation of OVLTGAD neuron axon terminals excited SCNVP neuronsin vitro and mimicked the effects of hypertonic saline on NST and bodytemperature in vivo. Furthermore, chemogenetic inhibition of OVLTGAD neuronsblunted the effects of systemic hypertonic saline on NST and body temperature.Finally, we show that hypertonic saline significantly phase-advanced thecircadian locomotor activity onset of mice. This effect was mimicked byoptogenetic activation of the OVLTGAD→ SCNVP pathway and was prevented bychemogenetic inhibition of OVLTGAD neurons. Collectively, our findings providedemonstration that clock time can be regulated by non-photic physiologicallyrelevant cues, and that such cues can drive unscheduled homeostatic responsesvia clock-output networks.

參考文獻:Sodium regulates clock time andoutput via an excitatory GABAergic pathway. Nature. 2020 Jul;583(7816):421-424.

 

6. Science—黑質網狀部GAD2陽性GABA能神經元是睡眠和運動的共同調控樞紐

Abstract

The arousal state of the braincovaries with the motor state of the animal. How these state changes arecoordinated remains unclear. We discovered that sleep-wake brain states andmotor behaviors are coregulated by shared neurons in the substantia nigra parsreticulata (SNr). Analysis of mouse home-cage behavior identified four stateswith different levels of brain arousal and motor activity: locomotion,nonlocomotor movement, quiet wakefulness, and sleep; transitions occurred notrandomly but primarily between neighboring states. The glutamic aciddecarboxylase 2 but not the parvalbumin subset of SNr γ-aminobutyric acid(GABA)-releasing (GABAergic) neurons was preferentially active in states of lowmotor activity and arousal. Their activation or inactivation biased thedirection of natural behavioral transitions and promoted or suppressed sleep,respectively. These GABAergic neurons integrate wide-ranging inputs andinnervate multiple arousal-promoting and motor-control circuits throughextensive collateral projections.

參考文獻:A common hub for sleep and motor control in the substantia nigra. Science. 2020 Jan 24;367(6476):440-445.

 

7. Cell—哈佛大學發現!!睡眠不足可能通過增加腸道活性氧化合物加速衰老,甚至引起「英年早逝」

Abstract

The view that sleep is essential forsurvival is supported by the ubiquity of this behavior, the apparent existenceof sleep-like states in the earliest animals, and the fact that severe sleeploss can be lethal. The cause of this lethality is unknown. Here we show, usingflies and mice, that sleep deprivation leads to accumulation of reactive oxygenspecies (ROS) and consequent oxidative stress, specifically in the gut. ROS arenot just correlates of sleep deprivation but drivers of death: their neutralizationprevents oxidative stress and allows flies to have a normal lifespan withlittle to no sleep. The rescue can be achieved with oral antioxidant compoundsor with gut-targeted transgenic expression of antioxidant enzymes. We concludethat death upon severe sleep restriction can be caused by oxidative stress,that the gut is central in this process, and that survival without sleep ispossible when ROS accumulation is prevented. VIDEO ABSTRACT.

參考文獻:Sleep Loss Can Cause Death throughAccumulation of Reactive Oxygen Species in the Gut. Cell. 2020 Jun11;181(6):1307-1328.e15.

 

8. Science—當科學家敲除了關鍵的時鐘基因Bmal1,你猜組織細胞分子的生物節律變不變?

Abstract

Circadian (~24 hour) clocks have afundamental role in regulating daily physiology. The transcription factor BMAL1is a principal driver of a molecular clock in mammals. Bmal1 deletion abolishes24-hour activity patterning, one measure of clock output. We determined whetherBmal1 function is necessary for daily molecular oscillations in skinfibroblasts and liver slices. Unexpectedly, in Bmal1 knockout mice, bothtissues exhibited 24-hour oscillations of the transcriptome, proteome, andphosphoproteome over 2 to 3 days in the absence of any exogenous drivers suchas daily light or temperature cycles. This demonstrates a competent 24-hourmolecular pacemaker in Bmal1 knockouts. We suggest that such oscillations mightbe underpinned by transcriptional regulation by the recruitment of ETS familytranscription factors, and nontranscriptionally by co-opting redoxoscillations.

參考文獻:Circadian rhythms in the absence ofthe clock gene Bmal1. Science. 2020 Feb 14;367(6479):800-806.

 

9. Nature—爬行動物屏狀核是產生慢波睡眠中尖波漣漪的關鍵核團

Abstract

The mammalian claustrum, owing to itswidespread connectivity with other forebrain structures, has been hypothesizedto mediate functions that range from decision-making to consciousness1. Here wereport that a homologue of the claustrum, identified by single-celltranscriptomics and viral tracing of connectivity, also exists in a reptile-theAustralian bearded dragon Pogona vitticeps. In Pogona, the claustrum underliesthe generation of sharp waves during slow-wave sleep. The sharp waves, togetherwith superimposed high-frequency ripples2, propagate to the entire neighbouringpallial dorsal ventricular ridge (DVR). Unilateral or bilateral lesions of theclaustrum suppress the production of sharp-wave ripples during slow-wave sleepin a unilateral or bilateral manner, respectively, but do not affect theregular and rapidly alternating sleep rhythm that is characteristic of sleep inthis species3. The claustrum is thus not involved in the generation of thesleep rhythm itself. Tract tracing revealed that the reptilian claustrumprojects widely to a variety of forebrain areas, including the cortex, and thatit receives converging inputs from, among others, areas of the mid- andhindbrain that are known to be involved in wake-sleep control in mammals4-6.Periodically modulating the concentration of serotonin in the claustrum, forexample, caused a matching modulation of sharp-wave production there and in theneighbouring DVR. Using transcriptomic approaches, we also identified aclaustrum in the turtle Trachemys scripta, a distant reptilian relative oflizards. The claustrum is therefore an ancient structure that was probablyalready present in the brain of the common vertebrate ancestor of reptiles andmammals. It may have an important role in the control of brain states owing tothe ascending input it receives from the mid- and hindbrain, its widespreadprojections to the forebrain and its role in sharp-wave generation duringslow-wave sleep.

參考文獻:A claustrum in reptiles and its rolein slow-wave sleep. Nature. 2020 Feb;578(7795):413-418.

 

10. Nature—選擇性褪黑素受體MT1激動劑可能是調控晝夜節律的潛在候選藥物

Abstract

The neuromodulator melatoninsynchronizes circadian rhythms and related physiological functions through theactions of two G-protein-coupled receptors: MT1 and MT2. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in thesuprachiasmatic nucleus of the hypothalamus, synchronizing the physiology andbehaviour of animals to the light-dark cycle1-4. The two receptors areestablished drug targets for aligning circadian phase to this cycle indisorders of sleep5,6 and depression1-4,7-9. Despite their importance, few invivo active MT1-selective ligands have been reported2,8,10-12, hampering boththe understanding of circadian biology and the development of targetedtherapeutics. Here we docked more than 150 million virtual molecules to an MT1crystal structure, prioritizing structural fit and chemical novelty. Of thesecompounds, 38 high-ranking molecules were synthesized and tested, revealingligands with potencies ranging from 470 picomolar to 6 micromolar.Structure-based optimization led to two selective MT1 inverse agonists-whichwere topologically unrelated to previously explored chemotypes-that acted asinverse agonists in a mouse model of circadian re-entrainment. Notably, we found that these MT1-selective inverse agonists advanced the phase of the mousecircadian clock by 1.3-1.5 h when given at subjective dusk, an agonist-likeeffect that was eliminated in MT1- but not in MT2-knockout mice. This study illustrates the opportunities for modulating melatonin receptor biology throughMT1-selective ligands and for the discovery of previously undescribed, in vivoactive chemotypes from structure-based screens of diverse, ultralargelibraries.

參考文獻:Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature. 2020Mar;579(7800):609-614.

語音解讀(具體見連結)

2020年十大研究進展名錄

2019年十大研究進展名錄

1. 年終盤點:2019年帕金森病十大基礎研究進展

2. 年終盤點:2019年帕金森病十大臨床研究進展

3. 年終盤點:2019年阿爾茨海默病十大基礎研究進展

4. 年終盤點:2019年阿爾茨海默病十大臨床研究進展

5. 年終盤點:2019年神經科學領域十大基礎研究進展

6. 年終盤點:2019年抑鬱症領域十大基礎研究進展(一半來自中國)

7. 年終盤點:2019年腦血管病領域十大基礎研究進展

8. 年終盤點:2019年神經炎症領域十大基礎研究進展

9. 年終盤點:2019年神經活動記錄十大基礎研究進展

10. 年終盤點:2019年ALS/FTD十大基礎研究進展

11. 年終盤點:2019年醫學和生物學領域深度學習和神經網絡十大基礎研究進展

12. 年終盤點:2019年神經內科十大臨床研究突破

13. 年終盤點:2019年疼痛防治和痛覺機制十大研究突破

14. 年終盤點:2019年睡眠和失眠領域十大研究突破

15.年終盤點:2019年神經發育及成年神經再生十大研究突破

16. 年終盤點:2019年大腦學習和記憶的十大研究突破

17. 年終盤點:2019年衰老和長壽十大研究突破

18. 年終盤點:2019年自閉症十大研究突破

2018年十大研究進展名錄

1.盤點2018年阿爾茨海默病十大研究突破

2.盤點2018年帕金森病十大研究突破

3. 盤點2018年神經科學二十大研究突破

4. 盤點2018年漸凍症(ALS)十大研究進展

5. 盤點2018年全球腦卒中十大研究進展

6. 盤點2018年神經影像十大研究進展

7. 盤點2018年神經炎症領域的十大研究突破

8. 盤點2018年神經變性痴呆十大研究突破

9. 2018年神經科學「學習和記憶」領域十大研究進展

10. 2018年抑鬱症領域的十大研究突破

11. 2018年痛覺和疼痛領域的十大研究突破

12. 2018年的神經幹細胞研究十大研究進展

13. 2018年的神經幹細胞研究十大研究進展

14. 2018年的十大睡眠研究突破

15. 2018年「衰老和長生不老」領域的十大研究突破

16. 2018年自閉症領域的十大研究突破

歡迎加入60個「神經科學臨床和基礎社群」

1、神經科學臨床和基礎主群(500人)已滿;

2、神經科學臨床和基礎Alzheimer亞群;

3、神經科學臨床和基礎Parkinson亞群;

4、神經科學臨床和基礎cerebrovascular亞群;

5、神經科學臨床和基礎Depression亞群;

6、神經科學臨床和基礎Movement disorders亞群;

7、神經科學臨床和基礎Neuroimmunology亞群;

8、神經科學臨床和基礎Psychiatry亞群;

9、神經科學臨床和基礎Neuroimaging亞群;

10、神經科學臨床和基礎Neurogenetics亞群;

11、神經科學臨床和基礎Neurodegeneration亞群;

12、神經科學臨床和基礎Epilepsy亞群;

13、神經科學臨床和基礎Sleep亞群;

14、神經科學臨床和基礎Neural Development亞群;

15、神經科學臨床和基礎Electrophysiology亞群;

16、神經科學臨床和基礎Neural circuits亞群;

17、神經科學臨床和基礎神經調控和腦機接口亞群;

18、神經科學臨床和基礎人工智慧亞群;

19、神經科學臨床和基礎重大疾病和疑難病亞群;

20、神經科學臨床和基礎衰老和永生亞群;

21、神經科學臨床和基礎周圍神經病群;

22、神經科學臨床和基礎神經肌肉疾病群;

23、神經科學臨床和基礎視覺系統研究群;

24、神經科學臨床和基礎疼痛研究群;

25、神經科學臨床和基礎Emotion研究群;

26、神經科學臨床和基礎意識研究群;

27、神經科學臨床和基礎Learning & Memory亞群;

28、神經科學國自然基金申請交流群;

29、神經科學ALS/FTD交流群;

30、神經科學腦外傷和脊髓外傷研究群;

31、神經科學兒科神經病學交流群;

32、神經科學Autism & ADHD研究群;

33、神經科學大數據和組學研究群;

34、神經科學非編碼RNA研究群;

35、神經科學schizophrenia研究群;

36、神經科學Non-human primate研究群;

37、神經科學神經損傷與修復研究群;

38、神經科學Epigenetics研究群;

39、神經科學神經介入和靜脈溶栓亞群;

40、神經科學計算神經科學亞群;

41、神經科學基因治療交流群;

42、神經科學細胞治療交流群;

43、神經科學納米藥物治療交流群;

44、神經科學中醫藥治療交流群;

45、神經科學免疫調節治療交流群;

46、神經科學類器官和類腦研究交流群;

47、神經科學語言研究交流群;

48、神經科學深度學習和神經網絡交流群;

49、神經科學類神經元和類腦器件設計交流群;

50、神經科學半人半機器人交流群;

51、神經科學感染性疾病研究群;

52、神經科學神經系統腫瘤研究群;

53、神經科學星型和小膠質細胞研究群;

54、神經科學神經外科研究群;

55、神經科學系統論和複雜性研究交流群;

56、神經科學腦腸軸和Microbiota交流群;

57、神經科學虛擬實境、增強現實和混合現實交流群;

58、神經科學臨床試驗和流行病學研究交流群;

59、神經科學單細胞測序研究交流群;

60、神經科學蛋白質解析交流群。

如果想入群,請加我微信(qingyierjing),並回復要加入的群,我會將您拉入群中。

20個神經科學領域的突破可能獲得諾貝爾獎

1. 意識研究:意識的本質、組成、運行機制及其物質載體;不同意識層次的操控和幹預,意識障礙性疾病的治療。

2. 學習和記憶的機制及其調控:記憶的形成和消退機制,記憶的人為移植和記憶的人為消除等;

3. 痴呆研究:阿爾茨海默病的機制和治療研究,血管性痴呆、額顳葉痴呆、路易體痴呆的機制研究和治療。

4. 睡眠和睡眠障礙的機制和幹預研究。

5. 情緒研究:喜、怒、哀、恐等基本情緒的機制和相關疾病的治療。

6. 計算和邏輯推理的神經科學基礎研究。

7. 語言的神經科學基礎研究。

8. 視覺圖像形成和運用的神經科學基礎研究。

9. 創造力、想像力和藝術文學創造的神經基礎研究。

10. 痛覺的神經科學基礎及其幹預研究

11. 性行為研究:性行為的神經科學基礎研究和性行為的調控和幹預。

12. 腦和脊髓損傷的機制及其幹預研究,包括腦卒中、脊髓損傷機制研究,神經幹細胞移植研究,新型神經修復技術,神經康復技術。

13. 精神類疾病的機制和幹預研究:自閉症、精分、抑鬱症、智能障礙、藥物成癮等;

14. 運動神經元病等神經變性病機制研究及其幹預。

15. 衰老的機制和永生研究,包括大腦衰老的機制和壽命延長研究。

16. 神經系統遺傳病的機制研究及基因治療。

17. 神經操縱和調控技術:光遺傳技術、藥物遺傳技術、基因編輯技術、經顱磁刺激、深部腦刺激和電刺激等。

18. 腦組織兼容性電子微晶片及腦機互動裝置研究,包括腦機接口、神經刺激晶片、記憶存儲晶片,意識存儲晶片,人腦非語言互動裝置等。

19. 半人半機器人的設計、完善和修復技術:包括任何機械肢體的人類移植,大腦移植入機器體內等。

20. 新型大腦成像和神經元活動記錄技術:高解析度成像技術、大型電極微陣列技術等。

臨床醫學前沿

專門解析最新的臨床指南和循證醫學證據 

神經科學臨床和基礎

專門解析最新的神經科學基礎和臨床研究進展 

臨床科研那些事

專門解析最新的臨床研究結果和觀點 

相關焦點

  • 生物節律的研究得諾貝爾生理或醫學獎啦
    如2008年Yan等對小鼠突變體的研究發現 NR3C1 與 FKBP/HSP90 複合體是對控制生物節律基因表達的至關重要; 2014年有三項研究發現CHRONO和UBE3A在小鼠的生物節律的調節中非常重要。基因以及蛋白質轉錄、 rRNA都具有節律性表達的特性。
  • 為什麼網際網路巨頭熱衷「年終盤點」?
    當然各家網際網路公司們的年終盤點雖然形式與內容各有不同,有年度消費報告、答題報導、搜索報告或者年度熱詞、熱點事件盤點。但從邏輯上看,這似乎與傳統媒體進行的盤點並沒有多大差別,比如《咬文嚼字》從2009年就開始發布年度流行詞、流行語,也是在同一年百度百科聯合《南都周刊》發布十大新詞。
  • 2020年呼吸領域研究進展深度盤點丨梅斯述評
    原創 Oranhgy MedSci梅斯 收錄於話題#新冠肺炎133##新冠肺炎1#新冠2導語:2020年度呼吸領域top10盤點來咯!2020年接近尾聲,2021年即將到來,在過去的一年中,新冠大流行背景下呼吸領域具有諸多突破性研究,也是最為特殊的一年,梅斯醫學特地給大家選取盤點了重磅級的新冠肺炎(更多可訪問梅斯醫學新冠肺炎專輯)、COPD、電子菸、哮喘指南等突破進展與研究。enjoy~1.
  • 2020年的年終固定資產盤點,您準備好了嗎?
    即將過去的2020年是企業在風雨中生存的一年。此刻,企業迎來了每年一度的年終固定資產大盤點。毫無疑問,降本增效是今年企業的一大核心。降本增效的方法有很多種,通過固定資產盤點來降本增效是一種簡便的方式。企業進行年終盤點固定資產的重要性1)展示固定資產的管理成績企業年終的固定資產大盤點,全面展示了企業一年中固定資產的管理成果
  • 【醫學前沿】關注2020年糖尿病領域的十大突破
    2020年雖已過去,但這一年註定是不平凡的一年,也是充滿挑戰和收穫的一年。在這一年中,糖尿病領域有哪些熱點事件和話題?糖尿病治療與管理的前沿領域,取得了不少成果。上海市第十人民醫院內分泌科也關注了2020年糖尿病領域的十大突破。
  • 越封鎖越突破!2020年中國在十大高科技領域取得重大突破!
    李光滿冰點時評924 2020年即將過去,這一年,美國在高科技和高端製造業對中國實施更嚴厲的制裁和封鎖,300多家中國機構、大學、企業遭到美國制裁,美國舉全國之力打擊中國核心企業、關鍵技術和重大項目。在美國的嚴厲制裁、封鎖和打擊下,中國高科技、中國高端製造業怎麼樣了?被美國打趴下了嗎?
  • 巨量算數首發年終盤點報告,解鎖10個新消費族群的新力量
    在數位化時代,如何更了解年輕一代的想法,研究他們的消費者行為?⁣近日,巨量算數策劃了《十大新消費趨勢》、《十大內容創作趨勢》以及《十大新消費人群》系列年終趨勢盤點報告,圍繞未來消費趨勢、內容創作與營銷趨勢、以及十大消費潛力人群與消費行為等方向,為營銷人提供洞察參考。目前,《十大新消費人群》報告已和《新周刊》合作發布,其它報告將於1月初陸續與大家見面。
  • 3分鐘看《科學》雜誌盤點年度十大突破
    3分鐘看《科學》雜誌盤點年度十大突破
  • 《劍網3》2013年終盤點 聆聽十大門派劇情歌
    《劍網3》2013年終盤點 聆聽十大門派劇情歌
  • 漢語盤點2020,和孩子一起「奧利給」——年終盤點
    「漢語盤點 2020」開始啦!「漢語盤點 2020」由國家語言資源監測與研究中心、商務印書館、人民網等聯合主辦,旨在「用一個字、一個詞描述當年的中國與世界」,鼓勵全民用語言記錄生活,描述中國視野下的社會變遷和世界萬象。各位老師、家長,和孩子一起了解這些熱詞、新詞,給孩子上一節「語文課」吧。
  • 《科學》雜誌評出2019年十大科學突破 人類首次捕捉到黑洞真容位居...
    央廣網北京12月22日消息(記者馬喆 朱敏 劉飛)據中央廣播電視總臺中國之聲《新聞晚高峰》報導,還有不到10天,我們即將揮別2019年,迎來嶄新的2020年。在即將過去的這一年,都有哪些人類重大科學突破?近日,權威學術期刊《科學》雜誌公布了2019年全球十大科學突破。
  • 2020固定資產年終盤點,降本增效了沒?
    首頁 > 傳媒 > 關鍵詞 > 易盤點最新資訊 > 正文 2020固定資產年終盤點,降本增效了沒?
  • 年終盤點|2020年全球十大熱門生物技術
    聚焦醫療器械領域可轉化的前沿技術 項目入駐或宣傳:harmogalaxy@163.com 2020年,新冠疫情的持續讓全球在惶恐不安中也充滿了期待,生物技術無疑成為全球最關注的焦點。
  • 2017年教育年終盤點:教育強國足音鏗鏘
    原標題:2017年教育年終盤點:教育強國足音鏗鏘 2017年,黨的十九大報告圍繞「優先發展教育事業」作出全面部署,明確提出「建設教育強國是中華民族偉大復興的基礎工程,必須把教育事業放在優先位置,加快教育現代化,辦好人民滿意的教育」。
  • 年終盤點:2016年生物醫學領域大事件
    轉眼間2016年就要離我們而去,回望這一年生物醫學領域發生了不少大事件,生物谷小編把這一年裡發生過的重大事件進行了盤點。不過癌症作為一類複雜性疾病,從取得基礎研究突破到達到臨床治癒的目的這中間的道路漫長又艱辛,而唐納德川普當選美國總統又為抗癌「登月計劃」的未來添加了一個未知數。
  • 杭州樓市2019年終盤點:五大TOP10榜單揭曉,還有年終考等著你!
    雖然「穩」字當頭,那作為承上啟下的2019年,也承載著走向新十年的特殊重任,這一年又湧現了哪些高光房企?又有哪些樓盤在主導著購房者的喜怒哀樂?市場又有哪些風向性事件?總結和回顧一定是我們告別舊十年,走向新十年的最好方式!
  • 速領 答案2020搜索帳單入口 百度【我的搜索年終盤點】答案2020...
    速領 答案2020搜索帳單入口 百度【我的搜索年終盤點】答案2020親密基金 2020年12月18日 14:10作者:黃頁編輯:黃頁
  • 2020年化學領域十大新興技術
    2020年化學領域十大新興技術 聚集誘導發光(Aggregation-induced emission) 人工智慧(Artificial intelligence)
  • 2020年十大早教加盟品牌排名,十大早教品牌的年終成績單
    原標題:2020年十大早教品牌排名,十大早教品牌的年終成績單2020新冠疫情下催生在線教育市場爆發式增長,但卻對線下教育帶來巨大衝擊。但是隨著經濟的復甦,教育行業也在逐漸恢復元氣,尤其是早教行業,更是受到了很多期待。中國目前正處於新一輪的出生高峰期,80後、90後新一代家長生育高峰期母嬰市場具有龐大的消費群體。
  • 年終盤點 數說騫雲的2018
    一個新願景 彰顯在雲管領域的專注力與創新力在2018年的校招現場,騫雲發布了新願景——雲+AI 打造未來IT,一路走來,我們專注於雲管領域的技術自研,我們更專注於用AI技術為雲時代的IT管理員們,打造智能自動的IT基礎設施。我們相信,在這個被技術定義的時代,創新會為我們描繪一個更接近理想世界的圖景。