【最全】機器學習頂會 ICML 2018 接收論文列表

2021-02-18 新智元



  新智元推薦  

來源:專知(ID:Quan_Zhuanzhi)

【新智元導讀】機器學習領域最具影響力的學術會議之一的ICML將於2018年7月10日-15日在瑞典斯德哥爾摩舉行。ICML是機器學習領域頂級會議,由國際機器學習協會(International Machine Learning Society)主辦。今年人工智慧頂會JCAI2018也將於 7月 13 日 - 7 月 19 日 在瑞典斯德哥爾摩舉行,很多人可能同時會參加這兩個會議,期待七月份的盛會。

詳細錄用名單日前已經公布,可參見:https://icml.cc/Conferences/2018/AcceptedPapersInitial

ICML 2018 Accepted Papers

Tempered Adversarial Networks
Mehdi S. M. Sajjadi (Max Planck Institute for Intelligent Systems) · Bernhard Schölkopf (MPI for Intelligent Systems Tübingen, Germany)

Adaptive Three Operator Splitting

Fabian Pedregosa (UC Berkeley) · Gauthier Gidel (MILA)

INSPECTRE: Privately Estimating the Unseen
Jayadev Acharya (Cornell University) · Gautam Kamath (MIT) · Ziteng Sun (Cornell University) · Huanyu Zhang (Cornell University)

Topological mixture estimation
Steve Huntsman (BAE Systems FAST Labs)

On Nesting Monte Carlo Estimators
Tom Rainforth (University of Oxford) · Rob Cornish (Oxford) · Hongseok Yang (KAIST) · andrew warrington (University of Oxford) · Frank Wood (University of Oxford)

Anonymous Walk Embeddings
SERGEY IVANOV (SKOLTECH & CRITEO) · Evgeny Burnaev (Skoltech)

Do Outliers Ruin Collaboration?
Mingda Qiao (IIIS, Tsinghua University)

Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization
Umut Simsekli (Telecom ParisTech) · Cagatay Yildiz (Aalto University) · Than Nguyen (Telecom ParisTech) · Ali Cemgil (Bogazici University) · Gaël RICHARD (Télécom ParisTech)

Variational Network Inference: Strong and Stable with Concrete Support
Amir Dezfouli (UNSW) · Edwin Bonilla (UNSW) · Richard Nock (Data61, The Australian National University and the University of Sydney)

Semi-Supervised Learning on Data Streams via Temporal Label Propagation
Tal Wagner (MIT) · Sudipto Guha (Amazon) · Shiva Kasiviswanathan (Amazon) · Nina Mishra (Amazon)

Learning Diffusion using Hyperparameters
Dimitrios Kalimeris (Harvard University) · Yaron Singer (Harvard) · Karthik Subbian (Facebook) · Udi Weinsberg (Facebook)

Distributional Optimization from Samples
Yaron Singer (Harvard) · Eric Balkanski (Harvard) · Nir Rosenfeld (Harvard University) · Amir Globerson (Tel Aviv University, Google)

Approximation Guarantees for Adaptive Sampling
Eric Balkanski (Harvard) · Yaron Singer (Harvard)

Safe Element Screening for Submodular Function Minimization
Weizhong Zhang (Zhejiang University & Tencent AI Lab) · Bin Hong (Zhejiang University) · Lin Ma (Tencent AI Lab) · Wei Liu (Tencent AI Lab) · Tong Zhang (Tecent AI Lab)

Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis
Pengtao Xie (Carnegie Mellon University) · Wei Wu (Carnegie Mellon University) · Eric Xing (Carnegie Mellon University)

An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method
Li Shen (Tencent AI Lab) · Peng Sun (Tencent AI Lab) · Yitong Wang (Tencent AI Lab) · Wei Liu (Tencent AI Lab) · Tong Zhang (Tecent AI Lab)

Nonoverlap-Promoting Variable Selection
Pengtao Xie (Carnegie Mellon University) · Hongbao Zhang (Petuum Inc) · Eric Xing (Carnegie Mellon University)

Spatio-temporal Bayesian On-line Changepoint Detection with Model Selection
Jeremias Knoblauch (Warwick University) · Theodoros Damoulas (University of Warwick)

Improved Training of Generative Adversarial Networks Using Representative Features
Duhyeon Bang (Yonsei univ.) · Hyunjung Shim (Yonsei University)

End-to-end Active Object Tracking via Reinforcement Learning
Wenhan Luo (Tencent AI Lab) · Peng Sun (Tencent AI Lab) · Fangwei Zhong (Peking University) · Wei Liu (Tencent AI Lab) · Tong Zhang (Tecent AI Lab) · Yizhou Wang (Peking University)

Bayesian Quadrature for Multiple Related Integrals
Xiaoyue Xi (Imperial College London) · Francois-Xavier Briol (University of Warwick) · Mark Girolami (Imperial College London)

Exploring Hidden Dimensions in Accelerating Convolutional Neural Networks
Zhihao Jia (Stanford University) · Sina Lin (Microsoft) · Charles Qi (Stanford University) · Alex Aiken (Stanford University)

Theoretical Analysis of Image-to-Image Translation with Adversarial Learning
PAN XUDONG (Fudan University) · Mi Zhang (Fudan University) · Daizong Ding (Fudan University)

Implicit Regularization in Nonconvex Statistical Estimation
Cong Ma (Princeton University) · Kaizheng Wang (Princeton University) · Yuejie Chi (CMU) · Yuxin Chen (Princeton University)

Goodness-of-fit Testing for Discrete Distributions via Stein Discrepancy
Jiasen Yang (Purdue University) · Qiang Liu (UT Austin) · Vinayak A Rao (Purdue University) · Jennifer Neville (Purdue University)

An Iterative, Sketching-based Framework for Ridge Regression
Agniva Chowdhury (Purdue University) · Jiasen Yang (Purdue University) · Petros Drineas (Purdue University)

Improving Sign Random Projections With Additional Information
Keegan Kang (Singapore University Of Technology And Design) · Wei Pin Wong (Singapore University of Technology and Design)

MSplit LBI: Realizing Feature Selection and Dense Estimation Simultaneously in Few-shot and Zero-shot Learning
Bo Zhao (Peking University) · Xinwei Sun (Peking University) · Yanwei Fu (Fudan university) · Yuan Yao (Hong Kong Science Tech) · Yizhou Wang (Peking University)

On the Spectrum of Random Features Maps of High Dimensional Data
Zhenyu Liao (L2S, CentraleSupelec) · Romain Couillet (CentralSupélec)

SMAC: Simultaneous Mapping and Clustering Using Spectral Decompositions
chandrajit bajaj (University of Texas at Austin) · Tingran Gao (University of Chicago) · Zihang He (Tsinghua University) · Qixing Huang (The University of Texas at Austin) · Zhenxiao Liang (Tsinghua University)

Which Training Methods for GANs do actually Converge?
Lars Mescheder (MPI Tübingen) · Andreas Geiger (MPI-IS and University of Tuebingen) · Sebastian Nowozin (Microsoft Research)

Neural Photometric Stereo Reconstruction for General Reflectance Surfaces
Tatsunori Taniai (RIKEN AIP) · Takanori Maehara (RIKEN AIP)

Adversarial Learning with Local Coordinate Coding
Jiezhang Cao (South China University of Technology) · Yong Guo (South China University of Technology) · Chunhua Shen (University of Adelaide) · Qingyao Wu (South China University of Technology) · Mingkui Tan (South China University of Technology)

Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin (MIT Computer Science and Artificial Intelligence Laboratory) · Regina Barzilay (MIT CSAIL) · Tommi Jaakkola (MIT)

DICOD: Distributed Convolutional Coordinate Descent for Convolutional Sparse Coding
CMLA Thomas Moreau (CMLA, ENS Paris-Saclay) · Laurent Oudre (Universite Paris 13) · CMLA Nicolas Vayatis (CMLA, ENS Paris Saclay)

Gradually Updated Neural Networks for Large-Scale Image Recognition
Siyuan Qiao (Johns Hopkins University) · Zhishuai Zhang (Johns Hopkins University) · Wei Shen (Shanghai University) · Bo Wang (Hikvision Research Institue) · Alan Yuille (Johns Hopkins University)

Blind Justice: Fairness with Encrypted Sensitive Attributes

Niki Kilbertus (MPI Tübingen & Cambridge) · Adria Gascon (The Alan Turing Institute / Warwick University) · Matt Kusner (Alan Turing Institute) · Michael Veale (UCL) · Krishna Gummadi (MPI-SWS) · Adrian Weller (University of Cambridge, Alan Turing Institute)

Structured Evolution with Compact Architectures for Scalable Policy Optimization
Krzysztof Choromanski (Google Brain Robotics) · Mark Rowland (University of Cambridge) · Vikas Sindhwani (Google) · Richard E Turner (University of Cambridge) · Adrian Weller (University of Cambridge, Alan Turing Institute)

Discovering Interpretable Representations for Both Deep Generative and Discriminative Models
Tameem Adel (University of Cambridge) · Zoubin Ghahramani (University of Cambridge & Uber) · Adrian Weller (University of Cambridge, Alan Turing Institute)

Neural Program Synthesis from Diverse Demonstration Videos
Shao-Hua Sun (University of Southern California) · Hyeonwoo Noh (POSTECH) · Sriram Somasundaram (University of Southern California) · Joseph Lim (Univ. of Southern California)

Learning Low-Dimensional Temporal Representations
Bing Su (Institute of Software Chinese Academy of Sciences)

Weakly consistent optimal pricing algorithms in repeated posted-price auctions with strategic buyer
Alexey Drutsa (Yandex; MSU)

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice
Alan Kuhnle (University of Florida) · J. Smith (University of Florida) · Victoria Crawford (University of Florida) · My Thai (University of Florida)

Learning the Reward Function for a Misspecified Model
Erik Talvitie (Franklin & Marshall College)

Information Theoretic Guarantees for Empirical Risk Minimization with Applications to Big Data and Model Selection
Ibrahim Alabdulmohsin (Saudi Aramco)

Message Passing Stein Variational Gradient Descent
Jingwei Zhuo (Tsinghua University) · Chang Liu (Tsinghua University) · Jiaxin Shi (Tsinghua University) · Jun Zhu (Tsinghua University) · Ning Chen () · Bo Zhang (Tsinghua University)

Towards Binary-Valued Gates for Robust LSTM Training
Di He (Microsoft Research) · Zhuohan Li (Peking University) · Fei Tian (Microsoft Research) · Wei Chen (Microsoft Research) · Tao Qin (Microsoft Research Asia) · Liwei Wang (Peking University) · Tieyan Liu ()

Learning Representations and Generative Models for 3D Point Clouds
Panagiotis Achlioptas (Stanford) · Olga Diamanti (Stanford) · Ioannis Mitliagkas (MILA, UdeM) · Leonidas Guibas (Stanford University)

Parallel Bayesian Network Structure Learning
Tian Gao (IBM Research) · Dennis Wei (IBM Research)

Batched Bayesian Optimization via Multi-objective Acquisition Ensemble for Automated Analog Circuit Design
Wenlong Lyu (Fudan University) · Fan Yang (Fudan University) · Changhao Yan () · Dian Zhou (Department of Electrical Engineering The University of Texas at Dallas Richardso) · Xuan Zeng (Fudan University)

Human Activity Prediction Using Sequence Earley Algorithm
Siyuan Qi (UCLA) · Baoxiong Jia (Peking University) · University of California Yingnian Wu (University of California, Los Angeles) · Song-Chun Zhu (UCLA)

Stochastic Proximal Algorithms for AUC Maximization
Michael Natole Jr (University at Albany) · Yiming Ying (SUNY Albany) · Siwei Lyu (University at Albany, State University of New York)

Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima
Simon Du (Carnegie Mellon University) · Jason Lee (University of Southern California) · Yuandong Tian (Facebook AI Research) · Aarti Singh (Carnegie Mellon University) · Barnabás Póczos (CMU)

Theoretical Insights into the Optimization Landscape and Generalization Ability of Over-parametrized Neural Networks
Simon Du (Carnegie Mellon University) · Jason Lee (University of Southern California)

Coded Sparse Matrix Multiplication
Sinong Wang (The Ohio State University) · Jiashang Liu (The Ohio State University) · Ness Shroff (The Ohio State University)

Invariance of Weight Distributions in Rectified MLPs
Susumu Tsuchida (The University of Queensland) · Fred Roosta (University of Queensland) · Marcus Gallagher (University of Queensland)

Video Prediction with Appearance and Motion Conditions
Yunseok Jang (Seoul National University) · Gunhee Kim (Seoul National University) · Yale Song (Microsoft AI & Research)

Scalable Deletion-Robust Submodular Maximization: Data Summarization with Privacy and Fairness Constraints
Ehsan Kazemi (Yale) · Morteza Zadimoghaddam (Google) · Amin Karbasi (Yale)

Theoretical Analysis of Sparse Subspace Clustering with Missing Entries
Manolis Tsakiris (Johns Hopkins University) · Rene Vidal (Johns Hopkins University)

Binary Partitions with Approximate Minimum Impurity
Eduardo Laber (PUC-RIO) · Marco Molinaro (PUC-RIO) · Felipe de A. Mello Pereira (Pontifícia Universidade Católica do Rio de Janeiro)

A Riemannian approach for structured low-rank matrix learning
Pratik Kumar Jawanpuria (Microsoft) · Bamdev Mishra (Microsoft)

The Generalization Error of Dictionary Learning with Moreau Envelopes
ALEXANDROS GEORGOGIANNIS (TECHNICAL UNIVERSITY OF CRETE)

Understanding Generalization and Optimization Performance of Deep CNNs
Pan Zhou (National University of Singapore) · Jiashi Feng (National University of Singapore)

Learning Compact Neural Networks with Regularization
Samet Oymak (University of California, Riverside)

PDE-Net: Learning PDEs from Data
Zichao Long (Peking University) · Yiping Lu (Peking University) · Xianzhong Ma (Peking University) · Bin Dong (Peking University)

Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations
Yiping Lu (Peking University) · Aoxiao Zhong (Zhejiang University) · Quanzheng Li (Mass General Hospital, Harvard Medical School) · Bin Dong (Peking University)

Augment and Reduce: Stochastic Inference for Large Categorical Distributions
Francisco Ruiz (Columbia University) · Michalis Titsias (Athens University of Economics and Business) · Adji Bousso Dieng (Columbia University) · David Blei (Columbia University)

Out-of-sample extension of graph adjacency spectral embedding
Keith Levin (University of Michigan) · Fred Roosta (University of Queensland) · Michael Mahoney (UC Berkeley) · Carey Priebe (Johns Hopkins University)

Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks
Brenden Lake (New York University) · Marco Baroni (Facebook Artificial Intelligence Research)

Learn to Exploration with Meta Policy Gradient
Tianbing Xu (Baidu Research, USA) · Jian Peng (UIUC) · Liang Zhao (Baidu Research USA) · Wei Xu (Baidu Research) · Qiang Liu (UT Austin)

Fast Stochastic AUC Maximization with O(1/n)O(1/n)-Convergence Rate
Mingrui Liu (The University of Iowa) · Xiaoxuan Zhang (University of Iowa) · Zaiyi Chen () · Tianbao Yang (The University of Iowa)

An Alternative View: When Does SGD Escape Local Minima?
Bobby Kleinberg (Cornell) · Yuanzhi Li (Princeton University) · Yang Yuan (Cornell University)

Dependent Relational Gamma Process Models for Dynamic Networks
Sikun Yang (TU Darmstadt) · Heinz Koeppl (TU Darmstadt)

Coordinated Exploration in Concurrent Reinforcement Learning
Maria Dimakopoulou (Stanford) · Benjamin Van Roy (Stanford University)

Geodesic Convolutional Shape Optimization
Pierre Baque (EPFL) · Edoardo Remelli (epfl) · Francois Fleuret (Idiap research institute) · EPFL Pascal Fua (EPFL, Switzerland)

Tight Regret Bounds for Bayesian Optimization in One Dimension
Jonathan Scarlett (National University of Singapore)

Active Testing: An Efficient and Robust Framework for Estimating Accuracy
Phuc Nguyen (UC Irvine) · Charless Fowlkes (UC Irvine) · Deva Ramanan (Carnegie Mellon University)

Non-convex Conditional Gradient Sliding
chao qu (technion) · Yan Li (Georgia Institute of Technology) · Huan Xu (Georgia Tech)

Spectrally approximating large graphs with smaller graphs
Andreas Loukas (EPFL) · Pierre Vandergheynst (École polytechnique fédérale de Lausanne)

Quickshift++: Provably Good Initializations for Sample-Based Mean Shift
Heinrich Jiang (Google) · Jennifer Jang (Uber) · Samory Kpotufe (Princeton University)

Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Trevor Campbell (MIT) · Tamara Broderick (MIT)

Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow
Xiao Zhang (University of Virginia) · Simon Du (Carnegie Mellon University) · Quanquan Gu (University of Virginia--> UCLA)

Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang (Google) · Zhengyuan Zhou (Stanford University) · Thomas Leung (Google Inc) · Li-Jia Li (Google) · Li Fei-Fei (Stanford University & Google)

Adaptive Sampled Softmax with Kernel Based Sampling
Guy Blanc (Stanford University) · Steffen Rendle (Google)

Black Box FDR
Wesley Tansey (Columbia University) · Yixin Wang (Columbia University) · David Blei (Columbia University) · Raul Rabadan (Columbia University Medical Center)

Graphical Nonconvex Optimization for Optimal Estimation in Gaussian Graphical Models
Qiang Sun (University of Toronto) · Kean Tan (University of Minnesota Twin Cities) · Han Liu (Princeton University) · Tong Zhang (Tecent AI Lab)

Policy Optimization with Demonstrations
Bingyi Kang (National University of Singapore) · Jiashi Feng (National University of Singapore)

Learning to Explain: An Information-Theoretic Perspective on Model Interpretation
Jianbo Chen (University of California, Berkeley) · Le Song (Georgia Institute of Technology) · Martin Wainwright (University of California at Berkeley) · Michael Jordan (UC Berkeley)

Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu (Rolls-Royce@NTU Corp Lab) · Jianfei Cai (Nanyang Technological University) · Yi Wang (Rolls-Royce Singapore) · Yew Soon ONG (Nanyang Technological University)

The Uncertainty Bellman Equation and Exploration
Brendan O'Donoghue (DeepMind) · Ian Osband (Google DeepMind) · Remi Munos (DeepMind) · Vlad Mnih (Google Deepmind)

Deep Asymmetric Multi-task Feature Learning
Hae Beom Lee (UNIST) · Eunho Yang (KAIST / AItrics) · Sung Ju Hwang (KAIST)

Learning Semantic Representations for Unsupervised Domain Adaptation
Shaoan Xie (Sun Yat-sen University) · Zibin Zheng ()

K-Beam Subgradient Descent for Minimax Optimization
Jihun Hamm (The Ohio State University) · Yung-Kyun Noh (Seoul National University)

Asynchronous Byzantine Machine Learning
Georgios Damaskinos (EPFL) · El Mahdi El Mhamdi (EPFL) · Rachid Guerraoui (EPFL) · Rhicheek Patra (EPFL) · Mahsa Taziki (EPFL)

Differentially Private Database Release via Kernel Mean Embeddings
Matej Balog (University of Cambridge and MPI Tübingen) · Ilya Tosltikhin (Max Planck Institute for Intelligent Systems, Tübingen) · Bernhard Schölkopf (MPI for Intelligent Systems Tübingen, Germany)

Learning with Abandonment
Ramesh Johari (Stanford University) · Sven Schmit (Stanford University)

Rapid Adaptation with Conditionally Shifted Neurons
Tsendsuren Munkhdalai (Microsoft Research) · Xingdi Yuan (Microsoft Maluuba) · Soroush Mehri (Microsoft Research) · Adam Trischler (Microsoft Research)

PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning
Yunbo Wang (Tsinghua University) · Zhifeng Gao (Tsinghua University) · Mingsheng Long (Tsinghua University) · Jianmin Wang (Tsinghua University) · Philip Yu (UIC)

The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized Learning
Siyuan Ma (The Ohio State University) · Raef Bassily () · Mikhail Belkin (Ohio State University)

An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning
Dhruv Malik (UC Berkeley) · Malayandi Palaniappan (UC Berkeley) · Jaime Fisac (UC Berkeley) · Dylan Hadfield-Menell (UC Berkeley) · Stuart Russell (UC Berkeley) · EECS Anca Dragan (EECS Department, University of California, Berkeley)

Dimensionality-Driven Learning with Noisy Labels
Xingjun Ma (The University of Melbourne) · Yisen Wang (Tsinghua University) · Michael E. Houle (National Institute of Informatics) · Shuo Zhou (The University of Melbourne) · Sarah Erfani (University of Melbourne) · Shutao Xia (Tsinghua University) · Sudanthi Wijewickrema (University of Melbourne) · James Bailey (The University of Melbourne)

Rectify Heterogeneous Model with Semantic Mapping
Han-Jia Ye (Nanjing University) · De-Chuan Zhan (Nanjing University) · Yuan Jiang (Nanjing University) · Zhi-Hua Zhou (Nanjing University)

Synthesizing Programs for Images using Reinforced Adversarial Learning
Iaroslav Ganin (Montreal Institute for Learning Algorithms) · Tejas Kulkarni (DeepMind) · Igor Babuschkin () · S. M. Ali Eslami (DeepMind) · Oriol Vinyals (DeepMind)

Fast Information-theoretic Bayesian Optimisation

Binxin Ru (University of Oxford) · Michael A Osborne (U Oxford) · Mark Mcleod (University of Oxford) · Diego Granziol (Oxford)

Local Convergence Properties of SAGA/Prox-SVRG and AccelerationClarice 

Poon (University of Cambridge) · Jingwei Liang (University of Cambridge) · Carola Schoenlieb (Cambridge University)

Let’s be honest: An optimal no-regret framework for zero-sum games
Ya-Ping Hsieh (École Polytechnique Fédérale d) · Ehsan Asadi Kangarshahi (University of Cambridge) · Mehmet Fatih Sahin (EPFL) · Volkan Cevher (EPFL)

Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory
Ron Amit (Technion – Israel Institute of Technology) · Ron Meir (Technion Israeli Institute of Technology)

An Estimation and Analysis Framework for the Rasch Model
Andrew Lan (Princeton University) · Mung Chiang (Purdue University) · Christoph Studer (Cornell University)

PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos
Paavo Parmas (Okinawa Institute of Science and Technology Graduate University) · Kenji Doya (Okinawa Institute of Science and Technology) · Carl Rasmussen (-) · Jan Peters (TU Darmstadt + Max Planck Institute for Intelligent Systems)

Comparison-Based Random Forests
Siavash Haghiri (University of Tübingen) · Damien Garreau (Max Planck Institute) · Ulrike von Luxburg (University of Tübingen)

Gradient descent with identity initialization efficiently learns positive definite linear transformations by deep residual networks
Peter Bartlett (UC Berkeley) · Dave Helmbold () · Phil Long (Google)

Semi-Amortized Variational Autoencoders
Yoon Kim (Harvard University) · Sam Wiseman (Harvard University) · Andrew Miller (Harvard) · David Sontag (Massachusetts Institute of Technology) · Alexander Rush (Harvard University)

Large-Scale Cox Process Inference using Variational Fourier Features
ST John (PROWLER.io) · James Hensman (PROWLER.io)

Best Arm Identification in Linear Bandits with Linear Dimension Dependency
Chao Tao (Indiana University Bloomington) · Saúl A. Blanco (Indiana University) · Yuan Zhou (Indiana University Bloomington)

Data-Dependent Stability of Stochastic Gradient Descent
Ilja Kuzborskij (University of Milan) · Christoph Lampert (IST Austria)

Learning One Convolutional Layer with Overlapping Patches
Surbhi Goel (University of Texas at Austin) · Adam Klivans (University of Texas at Austin) · Raghu Meka (UCLA)

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja (UC Berkeley) · Aurick Zhou (UC Berkeley) · Pieter Abbeel (OpenAI / UC Berkeley) · Sergey Levine (Berkeley)

Visualizing and Understanding Atari Agents
Samuel Greydanus (Oregon State University) · Anurag Koul (Oregon State University) · Jonathan Dodge (Oregon State University) · Alan Fern (Oregon State University)

Probabilistic Boolean Tensor Decomposition
Tammo Rukat (University of Oxford) · Christopher Holmes (University of Oxford) · Christopher Yau (University of Birmingham)

Dynamic Regret of Strongly Adaptive Methods
Lijun Zhang (Nanjing University) · Tianbao Yang (The University of Iowa) · rong jin (alibaba group) · Zhi-Hua Zhou (Nanjing University)

Active Learning with Logged Data
Songbai Yan (University of California San Diego) · Kamalika Chaudhuri (University of California at San Diego) · Tara Javidi (University of California San Diego)

Learning to Reweight Examples for Robust Deep Learning
Mengye Ren (Uber ATG / University of Toronto) · Wenyuan Zeng () · Bin Yang (University of Toronto) · Raquel Urtasun (University of Toronto)

An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks
Qianxiao Li (Institute of High Performance Computing, A*STAR, Singapore) · IHPC Shuji Hao (IHPC, A*STAR)

Deep linear networks with arbitrary loss: All local minima are global
Thomas Laurent (Loyola Marymount University) · James von Brecht (CSULB)

Communication Efficient Gradient Coding
Min Ye (Princeton University) · Emmanuel Abbe ()

Variable Selection via Penalized Neural Network: a Drop-Out-One Loss Approach
Mao Ye (PURDUE UNIVERSITY) · Yan Sun (Purdue University)

Adaptive Exploration-Exploitation Tradeoff for Opportunistic Bandits
Huasen Wu () · Xueying Guo (University of California Davis) · Xin Liu ()

Composite Marginal Likelihood Methods for Random Utility Models
Zhibing Zhao (Rensselaer Polytechnic Institute) · Lirong Xia (RPI)

Reviving and Improving Recurrent Back-Propagation
Renjie Liao (University of Toronto) · Yuwen Xiong (Uber ATG / University of Toronto) · Ethan Fetaya (University of Toronto) · Lisa Zhang (University of Toronto) · KiJung Yoon (The University of Texas at Austin) · Zachary S Pitkow (Baylor College of Medicine / Rice University) · Raquel Urtasun (University of Toronto) · Richard Zemel (Vector Institute)

Accelerated Spectral Ranking
Arpit Agarwal (University of Pennsylvania) · Prathamesh Patil (University of Pennsylvania) · Shivani Agarwal (University of Pennsylvania)

Dropout Training, Data-dependent Regularization, and Generalization Bounds
Wenlong Mou (UC Berkeley) · Yuchen Zhou (University of Wisconsin, Madison) · Jun Gao (Peking University) · Liwei Wang (Peking University)

Unbiased Objective Estimation in Predictive Optimization
Shinji Ito (NEC Corporation) · Akihiro Yabe (NEC Corporation) · Ryohei Fujimaki (-)

Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Lukas Balles (Max Planck Institute for Intelligent Systems) · Philipp Hennig (Max Planck Institute)

An Efficient Semismooth Newton based Algorithm for Convex Clustering
Yancheng Yuan (National University of Singapore) · Defeng Sun (The Hong Kong Polytechnic University) · Kim-Chuan Toh (National University of Singapre)

Least-Squares Temporal Difference Learning for the Linear Quadratic Regulator
Stephen Tu (UC Berkeley) · Benjamin Recht (Berkeley)

The Multilinear Structure of ReLU Networks
Thomas Laurent (Loyola Marymount University) · James von Brecht (CSULB)

Learning long term dependencies via Fourier recurrent units
Jiong Zhang (University of Texas at Austin) · Yibo Lin (UT-Austin) · Zhao Song (UT-Austin) · Inderjit Dhillon (UT Austin & Amazon)

Detecting non-causal artifacts in multivariate linear regression models
Dominik Janzing (Amazon Research Tübingen) · Bernhard Schölkopf (MPI for Intelligent Systems Tübingen, Germany)

Importance Weighted Transfer of Samples in Reinforcement Learning
Andrea Tirinzoni (Politecnico di Milano) · Andrea Sessa (Politecnico di Milano) · Matteo Pirotta (SequeL - Inria Lille - Nord Europe) · Marcello Restelli (Politecnico di Milano)

On Discrete-Continuous Mixtures in Probabilistic Programming: the Extended Semantics and General Inference Algorithms
Yi Wu (UC Berkeley) · Siddharth Srivastava (Arizona State University) · Nicholas Hay () · Simon Du (Carnegie Mellon University) · Stuart Russell (UC Berkeley)

SADAGRAD: Strongly Adaptive Stochastic Gradient Methods
Zaiyi Chen (University of Science and Technology of China) · Yi Xu (The University of Iowa) · Enhong Chen (University of Science and Technology of China) · Tianbao Yang (The University of Iowa)

Optimization Landscape and Expressivity of Deep CNNs
Quynh Nguyen (Saarland University) · Matthias Hein (University of Tuebingen)

Composite Functional Gradient Learning of Generative Adversarial Models
Rie Johnson (RJ Research Consulting) · Tong Zhang (Tecent AI Lab)

Learning Dynamics of Linear Denoising Autoencoders
Arnu Pretorius (Stellenbosch University) · Steve Kroon (Stellenbosch University) · Herman Kamper (Stellenbosch University)

Noise2Noise: Learning Image Restoration without Clean Training Images
Samuli Laine (NVIDIA Research) · Timo Aila (NVIDIA Research) · Jaakko Lehtinen (Aalto University & NVIDIA) · Tero Karras (NVidia) · Jacob Munkberg (NVIDIA) · Jon Hasselgren (NVIDIA) · Miika Aittala (MIT)

Learning Localized Spatio-Temporal Models From Streaming Data
Muhammad Osama (Uppsala University) · Dave Zachariah (Uppsala University) · Thomas Schön (Uppsala University)

A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou (The Chinese University of Hong Kong) · Fanhua Shang (The Chinese University of Hong Kong) · James Cheng (CUHK)

Katyusha X: Simple Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu (Microsoft Research AI)

Clipped Action Policy Gradient
Yasuhiro Fujita (Preferred Networks, Inc.) · Shin-ichi Maeda (Preferred Networks, inc.)

Revealing Common Behaviors in Heterogeneous Populations
Andrey Zhitnikov (Technion) · Rotem Mulayoff (Technion) · Tomer Michaeli (Technion)

A probabilistic framework for multi-view feature learning with many-to-many associations via neural networks
Okuno Akifumi (Kyoto University; RIKEN AIP) · Tetsuya Hada (Recruit Technologies Co. Ltd.) · Hidetoshi Shimodaira (Kyoto University / RIKEN AIP)

Curriculum Learning by Transfer Learning: Theory and Experiments with Deep Networks
Daphna Weinshall (Hebrew University of Jerusalem, Israel) · Gad Cohen (Hebrew University)

Faster Derivative-Free Stochastic Algorithm for Shared Memory Machines
Bin Gu (University of Pittsburgh) · Zhouyuan Huo (University of Pittsburgh) · Heng Huang (University of Pittsburgh)

The Dynamics of Learning: A Random Matrix Approach
Zhenyu Liao (L2S, CentraleSupelec) · Romain Couillet (CentralSupélec)

Stability and Generalization of Learning Algorithms that Converge to Global Optima
Zachary Charles (University of Wisconsin-Madison) · Dimitris Papailiopoulos (ECE at University of Wisconsin-Madison)

GAIN: Missing Data Imputation using Generative Adversarial Nets
Jinsung Yoon (University of California, Los Angeles) · James Jordon (University of Oxford) · Mihaela van der Schaar (University of Oxford)

To Understand Deep Learning We Need to Understand Kernel Learning
Mikhail Belkin (Ohio State University) · Siyuan Ma (The Ohio State University) · Soumik Mandal ()

RadialGAN: Leveraging multiple datasets to improve target-specific predictive models using Generative Adversarial Networks
Jinsung Yoon (University of California, Los Angeles) · James Jordon (University of Oxford) · Mihaela van der Schaar (University of Oxford)

Fast Approximate Spectral Clustering for Dynamic Networks
Lionel Martin (EPFL) · Andreas Loukas (EPFL) · Pierre Vandergheynst (École polytechnique fédérale de Lausanne)

Attention-based Deep Multiple Instance Learning
Maximilian Ilse (University of Amsterdam) · Jakub Tomczak (University of Amsterdam) · Max Welling (University of Amsterdam)

The Mechanics of n-Player Differentiable Games
David Balduzzi (DeepMind) · Sebastien Racaniere (DeepMind) · James Martens (DeepMind) · Jakob Foerster (University of Oxford) · Karl Tuyls (Deepmind) · Thore Graepel (DeepMind)

Weakly Submodular Maximization Beyond Cardinality Constraints: Does Randomization Help Greedy?
Lin Chen (Yale University) · Moran Feldman (The Open University of Israel) · Amin Karbasi (Yale)

Spotlight: Optimizing Device Placement for Training Deep Neural Networks
Yuanxiang Gao (University of Toronto) · Department of Electrical and Computer Li Chen (Department of Electrical and Computer Engineering, University of Toronto) · Baochun Li (University of Toronto)

Spurious Local Minima are Common in Two-Layer ReLU Neural Networks
Itay Safran (Weizmann Institute of Science) · Ohad Shamir (Weizmann Institute of Science)

Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder (Newcastle University) · Andrew Golightly (Newcastle University) · Stephen McGough (Newcastle University) · Dennis Prangle (Newcastle University)

Approximation Algorithms for Cascading Prediction Models
Matthew Streeter (Google)

Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning
Ronan Fruit (Inria Lille Nord-Europe) · Matteo Pirotta (SequeL - Inria Lille - Nord Europe) · Alessandro Lazaric (FAIR) · Ronald Ortner (Montanuniversitaet Leoben)

Nonconvex Optimization for Fair Regression
Junpei Komiyama (U-Tokyo) · Akiko Takeda (The Institute of Statistical Mathematics) · Junya Honda (University of Tokyo / RIKEN) · Hajime Shimao (Purdue University)

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization
Jiong Zhang (University of Texas at Austin) · Qi Lei (University of Texas at Austin) · Inderjit Dhillon (UT Austin & Amazon)

Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Mattias Teye (Electronic Arts) · Hossein Azizpour (KTH) · Kevin Smith (KTH Royal Institute of Technology)

由於微信字數限制,部分文章信息沒有展示,詳情請查看:

https://icml.cc/Conferences/2018/AcceptedPapersInitial

【加入社群】

新智元 AI 技術 + 產業社群招募中,歡迎對 AI 技術 + 產業落地感興趣的同學,加小助手微信號: aiera2015_3  入群;通過審核後我們將邀請進群,加入社群後務必修改群備註(姓名 - 公司 - 職位;專業群審核較嚴,敬請諒解)。

相關焦點

  • 機器學習領域頂會ICML 2018 接受論文列表
    【導讀】機器學習領域最具影響力的學術會議之一的ICML將於2018年7月10日-15日在瑞典斯德哥爾摩舉行。
  • ICML 2018 | 清華排名國內居首:大會論文接收情況一覽
    本文介紹了在瑞典斯德哥爾摩舉行的機器學習技術國際會議(ICML)中接收論文的情況。[ 導讀 ] ICML 2018 於 7 月 10 日在瑞典斯德哥爾摩舉行,今日該會議公布了接收論文列表,本次會議共收到 2473 篇論文,621 篇被接收,接收率為 25.1%(與去年基本持平)。
  • 西安電子科技大學團隊論文被機器學習頂會ICML2020錄用
    未來網高校頻道6月30日訊(記者 楊子健 通訊員 馮毓璇)第37屆國際機器學習大會(International Conference on Machine Learning,https://icml.cc/)將於07月13日—07月18日,通過線上舉行。
  • 機器學習頂會ICML馬上開始,有什麼亮點值得關注?
    夏乙 發自 凹非寺量子位 出品 | 公眾號 QbitAI這幾天,吃瓜群眾心系莫斯科,機器學習研究者們的目光,飄向了更靠北的斯德哥爾摩。機器學習頂會ICML 2018馬上就要開始了。當時,ICLR 2018接收論文列表剛剛公布,一作小哥哥Athalye說,ICLR錄用的對抗樣本防禦論文,他們的模型攻破了7/8。他所說的現象,就是這篇獲獎論文所得「混淆梯度(Obfuscated Gradients)」。
  • 機器學習頂會 ICML 2018 斯德哥爾摩開幕,公平性研究戴上光環
    雷鋒網 AI 科技評論按:經過 7 月 10 日的三個 Tutorial Session 和 Opening Reception 晚宴之後,在瑞典斯德哥爾摩舉辦的機器學習頂會 ICML 2018 正式進入第一天的正會。
  • ICML 2019論文接收結果可視化:清華、北大、南大榜上有名
    大會共收到3424篇論文投稿,其中774篇被接收(接收率為22.6%)。近日,博世的分析人員根據接收論文列表做出了一份可視化圖表,從中可以看出各機構和作者的論文貢獻情況。接收論文列表:https://icml.cc/Conferences/2019/AcceptedPapersInitial排名前50的論文貢獻機構下圖顯示了ICML 2019接收論文貢獻排名前50的機構。排名以機構貢獻的論文總數為準,至少有一名作者隸屬於該機構,因此一篇論文可能出現在多個機構中。
  • 幾個主要機構在ICML 2019投遞的論文中重點關注的方向
    今年 6 月,機器學習領域頂會 ICML 2019 將在美國舉行。為了幫助大家更好了解會議論文的情況,博世(Bosch)的分析人員對 ICML 2019 的論文進行了可視化分析。營長在此基礎上進一步對比了 2018 和 2019 兩年的論文接收情況,並重點分析了幾個主要機構在 ICML 2019 投遞的論文中重點關注的方向。
  • ICML2019機器學習頂會接受論文列表!
    【導讀】2019 第36屆機器學習國際會議2019年6月9日至15日 美國加州長灘會議中心本年度ICML共收到3400篇左右的投稿,經過嚴格篩選,共有
  • 2018年學術頂會:深度學習的江山如此多嬌
    >2018 頂會概覽頂會論文提交與接收情況2018 年頂會論文提交與接收情況一覽。綜合性會議ICML 是計算機科學領域的頂會之一。據統計,ICML 2018 共評審了 2473 篇論文(比去年的 1676 篇提高 47.6%,增幅顯著),接收論文 621 篇,接收率為 25.1%,與去年的 26% 基本持平。
  • 機器學習頂會ICML 2018:復旦大學副教授獲最佳論文亞軍 騰訊清華...
    智東西(公眾號:zhidxcom)文 | 心緣智東西7月12日消息,第35屆機器學習國際大會ICML 2018在7月10日至15日期間登陸瑞典斯特哥爾摩。ICML官網上提前公布了最佳論文名單,來自MIT和UC Berkeley的研究人員摘得最佳論文的桂冠。
  • 數千人頂會的乾貨,ICML、CVPR2019演講視頻資源在此
    機器之心整理 參與:李亞洲 不久之前,兩大人工智慧國際頂會 ICML 2019、CVPR 2019 相繼在美國加州長灘落幕。沒能現場參會如何學習大會內容?近日,這兩場大會的相關視頻已經放出,感興趣的讀者可通過視頻學習。
  • ICML進行時|一文看盡獲獎論文及Google、Facebook、微軟、騰訊的最新科研成果
    在該論文討論的這種在線流算法可以在只有非常小的協方差誤差的情況下,從大型矩陣抽取出最能近似它的小矩陣。對於移動機器人和無人機等視角會變動的平臺或目標會離開當前拍攝場景的情況,跟蹤目標時通常還需要對攝像頭的拍攝角度進行持續調整。該論文提出了一種使用強化學習的端到端的主動目標跟蹤方法,可直接根據畫面情況調整攝像頭角度。具體而言,研究者使用了一個 ConvNet-LSTM 網絡,其輸入為原始視頻幀,輸出為相機運動動作(前進、向左等)。
  • 美國霸榜ICML,佔據3/4被接收論文,中國論文數不到美國兩成
    大數據文摘出品來源:Medium編譯:木槿國際機器學習大會是機器學習領域最重要的會議之一,因此觀察誰在該會議上發表了文章是一件有趣的事情,所以我看了看2020國際機器學習大會接收的文章,並且分析了參會的作者、機構和國家
  • 「收藏」2018年不容錯過的20個人工智慧頂會時間表
    【新智元導讀】計算機科學,尤其是人工智慧領域相比其他學科更重視會議,最新、最重要的工作往往先發表在相關頂會上。本文介紹了2018年值得關注的20個頂會,包括人工智慧、機器學習、計算機視覺、自然語言處理、體系結構等領域。
  • 不被Hinton認同,否定同行成果,谷歌這篇研究拿下ICML最佳論文
    曉查 慄子 安妮 發自 凹非寺量子位 出品 | 公眾號 QbitAIICML 2019最佳論文來了!今年,共有3424篇論文提交到這場一年一度的機器學習國際頂會上,大會共接收了774篇。德國博世公司抓取了ICML 19官網上的接收數據,將論文的接受比例、貢獻最多的機構以及貢獻最大的個人作者統計了出來。不少國內高校和學者榜上有名。
  • 北理工研二學生獲傑出論文獎!ICML 2020 大陸論文量居前三,各獎項出爐!
    機器學習頂級會議 ICML 2020 於本月 13 日至 18 日以線上形式舉行。此次會議共收到 4990 篇論文,接收論文 1088 篇,接收率達 21.8%。與往年相比,接收率逐年走低。ICML 大會時間檢驗獎旨在獎勵對機器學習研究和實踐有著巨大影響的論文。今年獲得此獎項的是發表於 2009 年的論文《Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design》,目前這篇論文的被引用次數超過 1000。
  • ICML 2019最佳論文出爐 ETH、谷歌、劍橋分獲大獎
    新智元原創來源:Twitter、Reddit等編輯:金磊、小芹【新智元導讀】今日,國際機器學習頂會ICML公布2019年最佳論文獎:來自蘇黎世聯邦理工大學、谷歌大腦等的團隊和英國劍橋大學團隊獲此殊榮。另外,大會還公布了7篇獲最佳論文提名的論文。
  • NeurIPS2019機器學習頂會接受論文列表!
    來源:專知【導讀】人工智慧和機器學習領域的國際頂級會議NeurIPS 2019公布了接受論文,有效提交論文6743篇論文,
  • ACL 2019 接收論文榜單發布,我們做了可視化分析
    今天,ACL 2019 官方網站公布了接收論文列表,機器之心對今年接收論文的關鍵詞等信息進行了可視化分析。接收論文列表:http://www.acl2019.org/EN/program/papers.xhtml在論文接收列表中,我們可以看到清華大學的孫茂松組共有 9 篇論文被接收,來自加州大學聖芭芭拉分校(UCSB)的王威廉組(William Yang Wang)有 8 篇論文被接收,全組共有 7 長兩短;哈工大劉挺教授也有
  • 一文速覽ICML2020高引論文與華人作者
    :據官方統計,ICML 2020 共提交 4990 篇論文,投稿數量再創新高,而最終接收論文 1088 篇,接收率 21.8%。接下來讓我們看看截至目前引用量較高的本次 ICML 會議論文以及中國機構和華人的表現吧。ICML AMiner:https://www.aminer.cn/conf/icml2020ICMl2020高引用量的論文Aminer 開發的 ICML 2020 頂會系統給出了本屆會議引用量排名靠前的論文。