這個問題本身就是一個很有爭議的話題,但是如果站在數學的角度上考慮,這個問題卻是有確切的答案的。隨手畫的直線長度是無理數的可能性更大些。
首先我們可以假設這裡的隨意畫出的線段長度是隨機性的,你可以畫出長度為10的線段,也可以畫出長度為π的,完全不收任何因素影響。那麼這個問題就轉變成在所有實數中(因為線段的長度總是一個實數,不可能是虛數。)是有理數多還是無理數多?
有人會問,這個無理數和有理數之間還可以比數量多少?這個真的可以!
1874年,德國數學家康託爾發表論文證明了一個驚人的結論,他利用創立的對角線法則證明了,所有的整數和有理數是一一對應的,而實數不能與整數一一對應。何為一一對應?
比如,小明和小白手裡都藏著很多張牌,他們卻並不會數數,那有什麼方式來驗證他們手中誰的牌更多呢?由於他們的數學水平實在太差,他們想了好久終於想到了一個很好的方法。那就是每次每人抽一張,放在一起,然後再抽一張,直到誰手中沒有牌了,那麼手中還有牌的人牌就是最多的。這是當然是顯而易見的笨辦法。
上面每次都會從小明小白手中各取一張,我們就可以理解成一一對應。假如他們兩個手中的牌剛剛可以完全對應結束,那麼他們手中的牌數量就是一樣多的。這是一個顯而易見的結論,通常情況下,在有限張牌的情況下,這是一個很容易接受的概念。但是如果小明小白手中的牌是無限個,恐怕就不一定有人敢下這樣的結論了。
康託爾證明了,有理數可以與所有整數一一對應,同時,偶數也可以和所有整數相對應,奇數也可以和所有整數相對應。等等,偶數能和整數相對應,那不就是說偶數的個數和有理數是一樣多的?是的,很反常,但是這是經過理論嚴格證明的。
同時康託爾也證明了另外一個重要結論:有理數都是可數的,而實數不可數。所以,實數無法與有理數一一對應,因為實數的數量要遠遠多於有理數。也就是說,你在隨意畫一條線,如果真的有某種方法可以精確測量這條線的長度,那麼這裡的長度幾乎全部是無理數。
順便說一句,康託爾當年提出的集合論遭到了很大爭議,康託爾本人甚至一度因為遭受的非議太多,而精神都出現過問題。好在數學界最後撥亂反正,集合論成為了現代數學的基礎理論。
希爾伯特用堅定的語言向他的同代人宣布:「沒有任何人能將我們從康託爾所創造的伊甸園中驅趕出來」。