Python(33)常用指引:Unicode 指南

2021-03-02 百科全蘇
Unicode 指南本指南討論了 Python 對於表達文本數據的 Unicode 規範的支持,並且解釋了人們試圖使用 Unicode 時經常遇到的問題。Unicode 概述定義如今的程序需要具有處理許多不同類型字符的能力。應用程式常常需要國際化以便以用戶可選擇的不同語言顯示信息和輸出。同一個程序可能需要以英語、法語、日語、希伯來語或俄語輸出錯誤信息。網頁內容可能由任何語言寫成,並且可能包含不同的表情符號。Python 的字符串類型使用 Unicode 標準來表示字符,這使 Python 程序能夠正常處理所有這些可能的字符。Unicode 規範 (https://www.unicode.org/) 旨在列出人類語言中用到的每個字符,並賦予每個字符唯一的編碼。該規範持續進行修訂和更新以添加新的語言和符號。一個**字符**是文本的最小可能部件。『A』、『B』、『C』 等都是不同的字符。『È』 和 『Í』 也一樣。字符會隨著語言或者上下文的變化而變化。比如,『Ⅰ』 是一個表示 「羅馬數字 1」 的字符,它與大寫字母 『I』 不同。它們常常看起來相同,但這是兩個有著不同含義的不同字符。Unicode 標準描述了**碼位**如何表示字符。一個碼位的值是在 0 到 0x10FFFF (大約 110 萬個值,目前有其中 11 萬個被指派)。在這一標準中並且在這一文檔中,一個碼位寫作 U+265E 來表示擁有值 0x265e 的字符(十進位下為 9,822)。Unicode 標準包含了許多表格來列出字符和對應的碼位。

0061 'a'; LATIN SMALL LETTER A
0062 'b'; LATIN SMALL LETTER B
0063 'c'; LATIN SMALL LETTER C
...
007B '{'; LEFT CURLY BRACKET
...
2167 'Ⅷ'; ROMAN NUMERAL EIGHT
2168 'Ⅸ'; ROMAN NUMERAL NINE
...
265E '♞'; BLACK CHESS KNIGHT
265F '♟'; BLACK CHESS PAWN
...
1F600 '😀'; GRINNING FACE
1F609 '😉'; WINKING FACE
...

嚴格地說,這些定義暗示了這樣的說法是沒有意義的:「這是字符 U+265E」。U+265E 是一個碼位,其代表了某特定的字符 —— 在這一情形下,它代表了字符 「西洋棋黑方騎士(黑馬)」 『♞』。在非正式上下文中,碼位和字符的差異有時會被忽略。一個字符在屏幕上或在紙上被表示為一組圖形元素,被稱為**字形**。比如,大寫字母 A 的字形,是斜向的兩筆和水平的一筆,而具體的細節取決於所使用的字體。大部分 Python 代碼不必擔心字形,找到應被顯示的正確字形一般來說是用戶圖形界面工具箱或者終端的字體渲染器的工作。編碼上一段可以歸結為:一個 Unicode 字符串是一系列碼位(從 0 到 0x10FFFF 或者說十進位的 1,114,111 的數字)組成的序列。這一序列在內存中需要被表示為一組**碼元**,然後**碼元** 會對應到包含八個二進位位的字節。將 Unicode 字符串翻譯成字節序列的規則被稱為**字符編碼**,或者**編碼**。你可能會想到的第一種編碼是使用一個 32 位的整數來代表一個代碼位,然後使用 CPU 對 32 位整數的表達方式。在這一表達方式中,字符串 「Python」 可能看起來像是這樣:

P y t h o n
0x50 00 00 00 79 00 00 00 74 00 00 00 68 00 00 00 6f 00 00 00 6e 00 00 00
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

非常浪費空間。多數編碼都小於127,或者255,所以很多空間都是 0x00。上面的字符串takes 24 bytes compared to the 6 bytes needed for an ASCII representation. Increased RAM usage doesn't matter too much (desktop computers have gigabytes of RAM, and strings aren't usually that large), but expanding our usage of disk and network bandwidth by a factor of 4 is intolerable.It's not compatible with existing C functions such as strlen(), so a new family of wide string functions would need to be used.Therefore this encoding isn't used very much, and people instead choose other encodings that are more efficient and convenient, such as UTF-8.UTF-8 is one of the most commonly used encodings, and Python often defaults to using it. UTF stands for "Unicode Transformation Format", and the '8' means that 8-bit values are used in the encoding. (There are also UTF-16 and UTF-32 encodings, but they are less frequently used than UTF-8.) UTF-8 uses the following rules:If the code point is < 128, it's represented by the corresponding byte value.If the code point is >= 128, it's turned into a sequence of two, three, or four bytes, where each byte of the sequence is between 128 and 255.UTF-8 has several convenient properties:It can handle any Unicode code point.A Unicode string is turned into a sequence of bytes that contains embedded zero bytes only where they represent the null character (U+0000). This means that UTF-8 strings can be processed by C functions such as strcpy() and sent through protocols that can't handle zero bytes for anything other than end-of-string markers.A string of ASCII text is also valid UTF-8 text.UTF-8 is fairly compact; the majority of commonly used characters can be represented with one or two bytes.If bytes are corrupted or lost, it's possible to determine the start of the next UTF-8-encoded code point and resynchronize. It's also unlikely that random 8-bit data will look like valid UTF-8.UTF-8 is a byte oriented encoding. The encoding specifies that each character is represented by a specific sequence of one or more bytes. This avoids the byte-ordering issues that can occur with integer and word oriented encodings, like UTF-16 and UTF-32, where the sequence of bytes varies depending on the hardware on which the string was encoded.
參考文獻The Unicode Consortium site has character charts, a glossary, and PDF versions of the Unicode specification. Be prepared for some difficult reading. A chronology of the origin and development of Unicode is also available on the site.On the Computerphile Youtube channel, Tom Scott briefly discusses the history of Unicode and UTF-8 (9 minutes 36 seconds).To help understand the standard, Jukka Korpela has written an introductory guide to reading the Unicode character tables.Another good introductory article was written by Joel Spolsky. If this introduction didn't make things clear to you, you should try reading this alternate article before continuing.Wikipedia entries are often helpful; see the entries for "character encoding" and UTF-8, for example.Python's Unicode SupportNow that you've learned the rudiments of Unicode, we can look at Python's Unicode features.The String TypeSince Python 3.0, the language's str type contains Unicode characters, meaning any string created using "unicode rocks!", 'unicode rocks!', or the triple-quoted string syntax is stored as Unicode.The default encoding for Python source code is UTF-8, so you can simply include a Unicode character in a string literal:

try:
with open('/tmp/input.txt', 'r') as f:
...
except OSError:
# 'File not found' error message.
print("Fichier non trouvé")

Side note: Python 3 also supports using Unicode characters in identifiers:

répertoire = "/tmp/records.log"with open(répertoire, "w") as f:
f.write("test\n")

If you can't enter a particular character in your editor or want to keep the source code ASCII-only for some reason, you can also use escape sequences in string literals. (Depending on your system, you may see the actual capital-delta glyph instead of a u escape.)

>>> "\N{GREEK CAPITAL LETTER DELTA}" # Using the character name
'\u0394'
>>> "\u0394" # Using a 16-bit hex value
'\u0394'
>>> "\U00000394" # Using a 32-bit hex value
'\u0394'

In addition, one can create a string using the decode() method of bytes. This method takes an encoding argument, such as UTF-8, and optionally an errors argument.The errors argument specifies the response when the input string can't be converted according to the encoding's rules. Legal values for this argument are 'strict' (raise a UnicodeDecodeError exception), 'replace' (use U+FFFD, REPLACEMENT CHARACTER), 'ignore' (just leave the character out of the Unicode result), or 'backslashreplace' (inserts a \xNN escape sequence). The following examples show the differences:

>>> b'\x80abc'.decode("utf-8", "strict")
Traceback (most recent call last):
...
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 0:
invalid start byte
>>> b'\x80abc'.decode("utf-8", "replace")
'\ufffdabc'
>>> b'\x80abc'.decode("utf-8", "backslashreplace")
'\\x80abc'
>>> b'\x80abc'.decode("utf-8", "ignore")
'abc'

Encodings are specified as strings containing the encoding's name. Python comes with roughly 100 different encodings; see the Python Library Reference at 標準編碼 for a list. Some encodings have multiple names; for example, 'latin-1', 'iso_8859_1' and '8859' are all synonyms for the same encoding.One-character Unicode strings can also be created with the chr() built-in function, which takes integers and returns a Unicode string of length 1 that contains the corresponding code point. The reverse operation is the built-in ord() function that takes a one-character Unicode string and returns the code point value:

>>> chr(57344)
'\ue000'
>>> ord('\ue000')
57344


Converting to BytesThe opposite method of bytes.decode() is str.encode(), which returns a bytes representation of the Unicode string, encoded in the requested encoding.The errors parameter is the same as the parameter of the decode() method but supports a few more possible handlers. As well as 'strict', 'ignore', and 'replace' (which in this case inserts a question mark instead of the unencodable character), there is also 'xmlcharrefreplace' (inserts an XML character reference), backslashreplace (inserts a \uNNNN escape sequence) and namereplace (inserts a \N{...} escape sequence).The following example shows the different results:

>>> u = chr(40960) + 'abcd' + chr(1972)
>>> u.encode('utf-8')
b'\xea\x80\x80abcd\xde\xb4'
>>> u.encode('ascii')
Traceback (most recent call last):
...
UnicodeEncodeError: 'ascii' codec can't encode character '\ua000' in
position 0: ordinal not in range(128)
>>> u.encode('ascii', 'ignore')
b'abcd'
>>> u.encode('ascii', 'replace')
b'?abcd?'
>>> u.encode('ascii', 'xmlcharrefreplace')
b'&#40960;abcd&#1972;'
>>> u.encode('ascii', 'backslashreplace')
b'\\ua000abcd\\u07b4'
>>> u.encode('ascii', 'namereplace')
b'\\N{YI SYLLABLE IT}abcd\\u07b4'

The low-level routines for registering and accessing the available encodings are found in the codecs module. Implementing new encodings also requires understanding the codecs module. However, the encoding and decoding functions returned by this module are usually more low-level than is comfortable, and writing new encodings is a specialized task, so the module won't be covered in this HOWTO.Unicode Literals in Python Source CodeIn Python source code, specific Unicode code points can be written using the \u escape sequence, which is followed by four hex digits giving the code point. The \U escape sequence is similar, but expects eight hex digits, not four:

>>> s = "a\xac\u1234\u20ac\U00008000"
... # ^^^^ two-digit hex escape
... # ^^^^^^ four-digit Unicode escape
... # ^^^^^^^^^^ eight-digit Unicode escape
>>> [ord(c) for c in s]
[97, 172, 4660, 8364, 32768]

Using escape sequences for code points greater than 127 is fine in small doses, but becomes an annoyance if you're using many accented characters, as you would in a program with messages in French or some other accent-using language. You can also assemble strings using the chr() built-in function, but this is even more tedious.Ideally, you'd want to be able to write literals in your language's natural encoding. You could then edit Python source code with your favorite editor which would display the accented characters naturally, and have the right characters used at runtime.Python supports writing source code in UTF-8 by default, but you can use almost any encoding if you declare the encoding being used. This is done by including a special comment as either the first or second line of the source file:

#!/usr/bin/env python
# -*- coding: latin-1 -*-

u = 'abcdé'
print(ord(u[-1]))

The syntax is inspired by Emacs's notation for specifying variables local to a file. Emacs supports many different variables, but Python only supports 'coding'. The -*- symbols indicate to Emacs that the comment is special; they have no significance to Python but are a convention. Python looks for coding: name or coding=name in the comment.If you don't include such a comment, the default encoding used will be UTF-8 as already mentioned. See also PEP 263 for more information.Unicode PropertiesThe Unicode specification includes a database of information about code points. For each defined code point, the information includes the character's name, its category, the numeric value if applicable (for characters representing numeric concepts such as the Roman numerals, fractions such as one-third and four-fifths, etc.). There are also display-related properties, such as how to use the code point in bidirectional text.The following program displays some information about several characters, and prints the numeric value of one particular character:

import unicodedata

u = chr(233) + chr(0x0bf2) + chr(3972) + chr(6000) + chr(13231)

for i, c in enumerate(u):
print(i, '%04x' % ord(c), unicodedata.category(c), end=" ")
print(unicodedata.name(c))

# Get numeric value of second character
print(unicodedata.numeric(u[1]))

0 00e9 Ll LATIN SMALL LETTER E WITH ACUTE
1 0bf2 No TAMIL NUMBER ONE THOUSAND
2 0f84 Mn TIBETAN MARK HALANTA
3 1770 Lo TAGBANWA LETTER SA
4 33af So SQUARE RAD OVER S SQUARED
1000.0

The category codes are abbreviations describing the nature of the character. These are grouped into categories such as "Letter", "Number", "Punctuation", or "Symbol", which in turn are broken up into subcategories. To take the codes from the above output, 'Ll' means 'Letter, lowercase', 'No' means "Number, other", 'Mn' is "Mark, nonspacing", and 'So' is "Symbol, other". See the General Category Values section of the Unicode Character Database documentation for a list of category codes.Comparing StringsUnicode adds some complication to comparing strings, because the same set of characters can be represented by different sequences of code points. For example, a letter like 'ê' can be represented as a single code point U+00EA, or as U+0065 U+0302, which is the code point for 'e' followed by a code point for 'COMBINING CIRCUMFLEX ACCENT'. These will produce the same output when printed, but one is a string of length 1 and the other is of length 2.One tool for a case-insensitive comparison is the casefold() string method that converts a string to a case-insensitive form following an algorithm described by the Unicode Standard. This algorithm has special handling for characters such as the German letter 'ß' (code point U+00DF), which becomes the pair of lowercase letters 'ss'.

>>> street = 'Gürzenichstraße'
>>> street.casefold()
'gürzenichstrasse'

A second tool is the unicodedata module's normalize() function that converts strings to one of several normal forms, where letters followed by a combining character are replaced with single characters. normalize() can be used to perform string comparisons that won't falsely report inequality if two strings use combining characters differently:

import unicodedata

def compare_strs(s1, s2):
def NFD(s):
return unicodedata.normalize('NFD', s)

return NFD(s1) == NFD(s2)

single_char = 'ê'
multiple_chars = '\N{LATIN SMALL LETTER E}\N{COMBINING CIRCUMFLEX ACCENT}'
print('length of first string=', len(single_char))
print('length of second string=', len(multiple_chars))
print(compare_strs(single_char, multiple_chars))

$ python3 compare-strs.py
length of first string= 1
length of second string= 2
True

The first argument to the normalize() function is a string giving the desired normalization form, which can be one of 'NFC', 'NFKC', 'NFD', and 'NFKD'.The Unicode Standard also specifies how to do caseless comparisons:

import unicodedata

def compare_caseless(s1, s2):
def NFD(s):
return unicodedata.normalize('NFD', s)

return NFD(NFD(s1).casefold()) == NFD(NFD(s2).casefold())

# Example usage
single_char = 'ê'
multiple_chars = '\N{LATIN CAPITAL LETTER E}\N{COMBINING CIRCUMFLEX ACCENT}'

print(compare_caseless(single_char, multiple_chars))

This will print True. (Why is NFD() invoked twice? Because there are a few characters that make casefold() return a non-normalized string, so the result needs to be normalized again. See section 3.13 of the Unicode Standard for a discussion and an example.)Unicode Regular ExpressionsThe regular expressions supported by the re module can be provided either as bytes or strings. Some of the special character sequences such as \d and \w have different meanings depending on whether the pattern is supplied as bytes or a string. For example, \d will match the characters [0-9] in bytes but in strings will match any character that's in the 'Nd' category.The string in this example has the number 57 written in both Thai and Arabic numerals:

import re
p = re.compile(r'\d+')

s = "Over \u0e55\u0e57 57 flavours"
m = p.search(s)
print(repr(m.group()))

When executed, \d+ will match the Thai numerals and print them out. If you supply the re.ASCII flag to compile(), \d+ will match the substring "57" instead.Similarly, \w matches a wide variety of Unicode characters but only [a-zA-Z0-9_] in bytes or if re.ASCII is supplied, and \s will match either Unicode whitespace characters or [ \t\n\r\f\v].參考文獻Some good alternative discussions of Python's Unicode support are:Processing Text Files in Python 3, by Nick Coghlan.Pragmatic Unicode, a PyCon 2012 presentation by Ned Batchelder.The str type is described in the Python library reference at 文本序列類型 --- str.The documentation for the unicodedata module.The documentation for the codecs module.Marc-André Lemburg gave a presentation titled "Python and Unicode" (PDF slides) at EuroPython 2002. The slides are an excellent overview of the design of Python 2's Unicode features (where the Unicode string type is called unicode and literals start with u).Reading and Writing Unicode DataOnce you've written some code that works with Unicode data, the next problem is input/output. How do you get Unicode strings into your program, and how do you convert Unicode into a form suitable for storage or transmission?It's possible that you may not need to do anything depending on your input sources and output destinations; you should check whether the libraries used in your application support Unicode natively. XML parsers often return Unicode data, for example. Many relational databases also support Unicode-valued columns and can return Unicode values from an SQL query.Unicode data is usually converted to a particular encoding before it gets written to disk or sent over a socket. It's possible to do all the work yourself: open a file, read an 8-bit bytes object from it, and convert the bytes with bytes.decode(encoding). However, the manual approach is not recommended.One problem is the multi-byte nature of encodings; one Unicode character can be represented by several bytes. If you want to read the file in arbitrary-sized chunks (say, 1024 or 4096 bytes), you need to write error-handling code to catch the case where only part of the bytes encoding a single Unicode character are read at the end of a chunk. One solution would be to read the entire file into memory and then perform the decoding, but that prevents you from working with files that are extremely large; if you need to read a 2 GiB file, you need 2 GiB of RAM. (More, really, since for at least a moment you'd need to have both the encoded string and its Unicode version in memory.)The solution would be to use the low-level decoding interface to catch the case of partial coding sequences. The work of implementing this has already been done for you: the built-in open() function can return a file-like object that assumes the file's contents are in a specified encoding and accepts Unicode parameters for methods such as read() and write(). This works through open()'s encoding and errors parameters which are interpreted just like those in str.encode() and bytes.decode().Reading Unicode from a file is therefore simple:

with open('unicode.txt', encoding='utf-8') as f:
for line in f:
print(repr(line))

It's also possible to open files in update mode, allowing both reading and writing:

with open('test', encoding='utf-8', mode='w+') as f:
f.write('\u4500 blah blah blah\n')
f.seek(0)
print(repr(f.readline()[:1]))

The Unicode character U+FEFF is used as a byte-order mark (BOM), and is often written as the first character of a file in order to assist with autodetection of the file's byte ordering. Some encodings, such as UTF-16, expect a BOM to be present at the start of a file; when such an encoding is used, the BOM will be automatically written as the first character and will be silently dropped when the file is read. There are variants of these encodings, such as 'utf-16-le' and 'utf-16-be' for little-endian and big-endian encodings, that specify one particular byte ordering and don't skip the BOM.In some areas, it is also convention to use a "BOM" at the start of UTF-8 encoded files; the name is misleading since UTF-8 is not byte-order dependent. The mark simply announces that the file is encoded in UTF-8. For reading such files, use the 'utf-8-sig' codec to automatically skip the mark if present.Unicode filenamesMost of the operating systems in common use today support filenames that contain arbitrary Unicode characters. Usually this is implemented by converting the Unicode string into some encoding that varies depending on the system. Today Python is converging on using UTF-8: Python on MacOS has used UTF-8 for several versions, and Python 3.6 switched to using UTF-8 on Windows as well. On Unix systems, there will only be a filesystem encoding if you've set the LANG or LC_CTYPE environment variables; if you haven't, the default encoding is again UTF-8.The sys.getfilesystemencoding() function returns the encoding to use on your current system, in case you want to do the encoding manually, but there's not much reason to bother. When opening a file for reading or writing, you can usually just provide the Unicode string as the filename, and it will be automatically converted to the right encoding for you:

filename = 'filename\u4500abc'
with open(filename, 'w') as f:
f.write('blah\n')

Functions in the os module such as os.stat() will also accept Unicode filenames.The os.listdir() function returns filenames, which raises an issue: should it return the Unicode version of filenames, or should it return bytes containing the encoded versions? os.listdir() can do both, depending on whether you provided the directory path as bytes or a Unicode string. If you pass a Unicode string as the path, filenames will be decoded using the filesystem's encoding and a list of Unicode strings will be returned, while passing a byte path will return the filenames as bytes. For example, assuming the default filesystem encoding is UTF-8, running the following program:

fn = 'filename\u4500abc'
f = open(fn, 'w')
f.close()

import os
print(os.listdir(b'.'))
print(os.listdir('.'))

will produce the following output:

$ python listdir-test.py
[b'filename\xe4\x94\x80abc', ...]
['filename\u4500abc', ...]

The first list contains UTF-8-encoded filenames, and the second list contains the Unicode versions.Note that on most occasions, you should can just stick with using Unicode with these APIs. The bytes APIs should only be used on systems where undecodable file names can be present; that's pretty much only Unix systems now.Tips for Writing Unicode-aware ProgramsThis section provides some suggestions on writing software that deals with Unicode.The most important tip is:Software should only work with Unicode strings internally, decoding the input data as soon as possible and encoding the output only at the end.If you attempt to write processing functions that accept both Unicode and byte strings, you will find your program vulnerable to bugs wherever you combine the two different kinds of strings. There is no automatic encoding or decoding: if you do e.g. str + bytes, a TypeError will be raised.When using data coming from a web browser or some other untrusted source, a common technique is to check for illegal characters in a string before using the string in a generated command line or storing it in a database. If you're doing this, be careful to check the decoded string, not the encoded bytes data; some encodings may have interesting properties, such as not being bijective or not being fully ASCII-compatible. This is especially true if the input data also specifies the encoding, since the attacker can then choose a clever way to hide malicious text in the encoded bytestream.Converting Between File EncodingsThe StreamRecoder class can transparently convert between encodings, taking a stream that returns data in encoding #1 and behaving like a stream returning data in encoding #2.For example, if you have an input file f that's in Latin-1, you can wrap it with a StreamRecoder to return bytes encoded in UTF-8:

new_f = codecs.StreamRecoder(f,
# en/decoder: used by read() to encode its results and
# by write() to decode its input.
codecs.getencoder('utf-8'), codecs.getdecoder('utf-8'),

# reader/writer: used to read and write to the stream.
codecs.getreader('latin-1'), codecs.getwriter('latin-1') )


Files in an Unknown EncodingWhat can you do if you need to make a change to a file, but don't know the file's encoding? If you know the encoding is ASCII-compatible and only want to examine or modify the ASCII parts, you can open the file with the surrogateescape error handler:

with open(fname, 'r', encoding="ascii", errors="surrogateescape") as f:
data = f.read()

# make changes to the string 'data'

with open(fname + '.new', 'w',
encoding="ascii", errors="surrogateescape") as f:
f.write(data)

The surrogateescape error handler will decode any non-ASCII bytes as code points in a special range running from U+DC80 to U+DCFF. These code points will then turn back into the same bytes when the surrogateescape error handler is used to encode the data and write it back out.參考文獻One section of Mastering Python 3 Input/Output, a PyCon 2010 talk by David Beazley, discusses text processing and binary data handling.The PDF slides for Marc-André Lemburg's presentation "Writing Unicode-aware Applications in Python" discuss questions of character encodings as well as how to internationalize and localize an application. These slides cover Python 2.x only.The Guts of Unicode in Python is a PyCon 2013 talk by Benjamin Peterson that discusses the internal Unicode representation in Python 3.3.致謝The initial draft of this document was written by Andrew Kuchling. It has since been revised further by Alexander Belopolsky, Georg Brandl, Andrew Kuchling, and Ezio Melotti.Thanks to the following people who have noted errors or offered suggestions on this article: Éric Araujo, Nicholas Bastin, Nick Coghlan, Marius Gedminas, Kent Johnson, Ken Krugler, Marc-André Lemburg, Martin von Löwis, Terry J. Reedy, Serhiy Storchaka, Eryk Sun, Chad Whitacre, Graham Wideman.

相關焦點

  • Python 與 Unicode
    unicode 與 utf8 的關係unicode 定義了統一的字符集, UTF8 則是一種編碼 unicode 字符集的方式.在 python2 中, str 類型, unicode 類型都是 basestring 的子類, 其中 str 類型就好比 C 語言中的字符串, unicode 類型就好比 C 語言中的寬字符串.因為 utf8 的編碼方式不使用 0x0 填充, 一串 utf8 字符流實際上也是一串合法的 c 字符流 (0x0 結尾) — 也就是合法的 str 類型的字符流.
  • Python 2.x 字符編碼終極指南
    為了驗證上面輸出內容確實是字節串,我們用python提供的 bytearray 函數將相同內容的 unicode字符串用 UTF-8 編碼為字節數組,如下所示:>>> unicode_str = u'Welcome to 廣州'>>> bytearray(unicode_str, 'UTF-8')bytearray(b'Welcome
  • 【Python進階】2.9將Unicode文本標準化
    為了修正這個問題,你可以使用unicodedata模塊先將文本標準化:>>> import unicodedata>>> t1 = unicodedata.normalize('NFC', s1)>>> t2 = unicodedata.normalize('NFC', s2)>>>
  • 數據科學常用文件類型、讀取、中文編碼Python代碼詳解(14k字經典收藏版,附周五新聞四則)
    中文亂碼問題93.1 python 中的str和unicode93.2 str 和 unicode 對象的轉換103.3 設置默認的編碼格式10四、操作不同編碼格式的中文文件10五、文件的編碼格式和編碼聲明的作用11
  • Python 2 與 Python 3 的區別
    ,Python 3中的字符串默認就是Unicode,Python 3中的str相當於Python 2中的unicode。has_key'print函數在py2中print是一個語法結構,而在py3中print是一個函數,print(value, ..., sep=' ', end='\n',file=sys.stdout, flush=False)file可以是文件,也就是可以把列印的東西直接輸出到文件,這個就很方便,我經常用
  • python入門教程06-01(python語法入門之字符編碼)
    解釋器執行文件的流程以python test.py為例,執行流程如下#階段1、啟動python解釋器,此時就相當於啟動了一個文本編輯器#階段2、python解釋器相當於文本編輯器,從硬碟上將test.py的內容讀入到內存中#階段3、python解釋器解釋執行剛剛讀入的內存的內容,開始識別python語法2.4 總結python解釋器與文件本編輯的異同如下
  • python基礎學習—04字符串與編碼
    數字和一些標點符號下面是ASCII表:ASCII值控制字符ASCII值控制字符ASCII值控制字符ASCII值0NUT32(space)64@961SOH33位元組是計算機存儲的最小單位,具體換算如下:UTF32是Unicode 碼 的一種實現,一般用4個字節表示一個字符,而一個英文字符只需要1個字節,一個常用漢字需要2個字節,這樣比較浪費存儲空間。故為了節省存儲空間,UTF8 一般用1 到4 個字節表示一個字符,比如:英文字符用1 個字節,常用漢字用2 個字節。
  • python常用英語單詞詞彙 unit6
    1. python tutorial python入門指南、python教程2.介紹;引進;採用;入門;傳入19. introduction to 介紹;入門20. getting started 入門指南;準備開始21. table of Contents 本期目錄目錄目次內容列表22. table e of contents
  • 【Python基礎】(6.1)字符編碼
    #階段3、python解釋器解釋執行剛剛讀入的內存的內容,開始識別python語法##2.4 總結python解釋器與文件本編輯的異同如下#1、相同點:前兩個階段二者完全一致,都是將硬碟中文件的內容讀入內存,詳解如下python解釋器是解釋執行文件內容的,因而python解釋器具備讀py文件的功能,這一點與文本編輯器一樣#2、不同點:在階段3時,針對內存中讀入的內容處理方式不同,詳解如下文本編輯器將文件內容讀入內存後,是為了顯示或者編輯,根本不去理會python的語法,而python解釋器將文件內容讀入內存後
  • 如何正確解決Python中的中文編碼問題?
    編程派微信號:codingpy作者:xianglong原文連結:http://xianglong.me/article/learn-python-1-chinese-encoding/字符串是Python中最常用的數據類型,而且很多時候你會用到一些不屬於標準ASCII字符集的字符,這時候代碼就很可能拋出UnicodeDecodeError:
  • Python的基本數據類型之二:字符串(String)(上)
    字符串類型在Python中是一種最常見,也是最常用的類型,從今天開始,我們分三個章節,儘可能詳細的對字符串進行介紹,希望朋友們多多關注我們,對我們也是一種極大的支持和鼓勵,謝謝!hello world >>>print(str3) #輸出:hello world >>>print(str4) #輸出:hello world這都是可以的;小貼士:1.python
  • Python日課-3.3-python 2 和 3 的區別
    官方說明在此:https://www.python.org/dev/peps/pep-0373/那麼,Python2 和 Python3 有哪些區別呢?首先,最常用的 print 在 python2 中是一條語句,在 Python3 中則是函數:print "hello world"print("hello world")其次,整數相除的結果不同。在 Python2 中,整數相除的結果是整數: 3 / 2 = 1 。
  • 深入淺出 + 徹底理解 Python 編碼
    python是怎麼聰明地解決這個問題的呢?很簡單,就是decode!decode的意思是說,你有一個字符串,並且你知道它的編碼,只要你用該編碼decode這個字符串,那麼,python就會識別出裡面的字符內容,同時,建一個int數組,將每個字符的unicode序號存進去。
  • 給妹子講python-S01E08理清python中的字符編碼方法
    前文傳送門:給妹子講python-S01E01好用的列表給妹子講python-S01E02學會用字典給妹子講python-S01E03元組的使用給妹子講python-S01E04容器遍歷和列表解析式給妹子講python-S01E05字符串的基本用法給妹子講python-S01E06字符串用法進階給妹子講python-S01E07字符編碼歷史觀:從ASCII到Unicode【要點搶先看】1.python中編、解碼的本質是文本字符串和字節字符串的相互轉換
  • 了不起的 Unicode!
    UTF-8在HTML和類似協議上非常常用。UTF-8使用變長編碼。它的優點是,對應於ASCII字符集的那些Unicode字符的字節值與它們在ASCII中的值完全相同,因此使用UTF-8編碼的Unicode字符可以在絕大多數已有軟體上使用,無需對軟體做出任何修改。UTF-16在許多需要平衡性能和存儲效率的環境中非常常用。
  • python os.listdir()亂碼解決方案
    /usr/bin/python# -*- coding: UTF-8 -*-import os, sys# 打開文件path = "/var/www/html/"dirs = os.listdir( path )# 輸出所有文件和文件夾for file in dirs:  print(file
  • python(內置函數, 模塊)打補丁, 兼容py2、3
    錯誤文件測試print(unicode, type(unicode))"""Traceback (most recent call last): File "/Users/msw/Desktop/tools/py3_test.py", line 4, in <module> print
  • Python 編碼為什麼那麼蛋疼?
  • 學Python,搞Kodi
    還一種常用的形式,就是把函數當作dict的value。根據key 進行選擇。unicode是一種特殊的字符串,它採用兩個字節來代表一個字符,無一例外。隨著計算機系統軟體的國際化,很多程序內部都使用unicode編碼,它可以涵蓋世界上任何民族語言和方言的字符,不會產生任何奇異。像windows在2000以後吧,API內部都是使用unicode來表示字符串的。對於unicode而言,肯定是沒有字符集而言的。那麼什麼是字符集?
  • 002.Python核心數據類型
    , 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']轉義字符和unicode