課標教材對「0也是自然數」的規定,顛覆了人們對自然數的傳統認識。
於此,**教科所教材編寫組主編陳昌鑄如是說:國際上對自然數的定義一直都有不同的說法,以法國為代表的多數國家都認為自然數從0開始,我國教材以前一直都是遵循前蘇聯的說法,認為0不是自然數。2000年教育部主持召開教材改編會議時,已明確提出將0歸為自然數。這次改版也是與國際慣例接軌。
從教學實踐層面來說,將「0」規定為「自然數」也有著積極的現實意義。
眾所周知,數學中的集合被分為有限集合和無限集合兩類。有限集合是含有有限個元素的集合,像某班學生的集合。無限集合是含有的元素個數是非有限的集合,如分數的集合。因為自然數具有「基數」的性質,因此用自然數來描述有限集合中元素的個數是很自然的。
但在有限集合中,有一個最主要也是最基本的集合,叫空集{},元素個數為0。如果不把0作為自然數,那麼空集的元素的個數就無法用自然數來表示了。如果把「0」作為一個自然數,那麼自然數就可以完成刻畫「有限集合元素個數」的任務了。於此,從「自然數的基數性」這個角度,我們看到了把「0」作為自然數的好處。
「0」加入傳統的自然數集合,所有的「運算規則」依舊保持,如新自然數集合{0,1,2,…,n,…}中的任何兩個自然數都可以進行加法和乘法運算,而運算結果仍然是自然數。同時,加法、乘法運算的結合律和交換律,以及乘法的分配律也不會受到影響。
所以,「0」加盟到自然數集合實屬理所當然,而不僅僅是人為的「規定」。它讓我們更好地理解自然數和它的功能,同時也讓我們意識到教學時不僅要知道和記住數學的「定義」和「規定」,還應該思考「規定」背後的數學涵義。