高速應用中電流反饋運放電路

2020-12-13 電子產品世界

電流反饋放大器不受基本增益帶寬積的限制,隨著信號幅度的增加,帶寬的損失非常小。因為可以在最小失真的條件下對大信號進行調節,這些放大器在非常高的頻率下通常都具有優異的線性度。而電壓反饋放大器的帶寬隨著增益的增加降低,電流反饋放大器在很寬的增益範圍上維持其大部分帶寬不變。

本文引用地址:http://www.eepw.com.cn/article/186119.htm

正因為如此,準確地說,電流反饋運放沒有增益帶寬積的限制。當然,電流反饋運放也不是無限快,其壓擺率(Slew Rate)不受內部偏置電流的限制,但受三極體本身的速度限制。對給定的偏置電流,這就容許不用通常可能影響穩定性的正反饋或其方法來獲得較大的壓擺率。

那麼如何構建這些電路呢?電流反饋運放具有一個與差分對相對的輸入緩衝器,該輸入緩衝器大多數情況下常常是射極跟隨器或其它非常類似的電路。正相輸入端具有高阻抗,而緩衝器的輸出,即放大器的反相輸入具有低阻抗。相比之下,電壓反饋放大器的輸入都是高阻。

電流反饋運放的輸出是電壓,並且它與流出或流入運放的反相輸入端的電流有關,這由稱為互阻抗(transimpedance)的複雜函數Z(s)來表示(圖1)。在直流時,互阻抗是一個非常大的數,並且像電壓反饋運放一樣,它隨著頻率的增加具有單極點滾降特性。

電流反饋運放靈活性的關鍵之一是具有可調節的帶寬和可調節的穩定性。因為反饋電阻的數值實際上改變放大器的交流環路的動態特性,所以能夠影響帶寬和穩定性兩個方面。加之具有非常高的壓擺率和基於反饋電阻的可調節帶寬,你可以獲得與器件的小信號帶寬非常接近的大信號帶寬。在甚至更好的情況下,該帶寬在很寬的增益範圍內大部分都維持不變。而因為具有固有的線性度,你也可以在高頻大信號時獲得較低的失真。

如何發現最佳的反饋電阻RF

由於放大器的交流特性部分地取決於反饋電阻,這就讓我們能夠針對每一個特定的應用「量身定製」放大器。降低反饋電阻的數值將提升環路增益。為了保持穩定性和最大的帶寬,在低增益時,反饋電阻要設置為較高的數值;隨著增益的上升,環路增益自然降低。如果需要高的增益,可以利用較小的反饋電阻來部分地恢復環路增益。

圖1:具有Z(s)和反饋電阻的電路示意圖

圖2:能夠體現LMH6714特色的不同RF條件下的頻率響應

在圖2中你可以看到隨著你改變反饋電阻帶寬所發生的變化。在右手曲線的遠處,反饋電阻RF等於147Ω,你可以看到頻率響應具有相當大的峰值。該曲線也具有最高的帶寬。減小該電阻到遠遠低於這個147Ω,會導致你的脈衝響應出現振鈴,如果再進一步減小該電阻,實際上就會發生振蕩。RF等於300Ω的曲線具有優異的平坦度和增益,並仍然具有與峰值頻率響應可比的良好帶寬。

所以,我們不必犧牲太多的帶寬就已經獲得了很高的穩定性。利用600Ω的反饋電阻,你就能調節回你的頻率響應。例如,如果一個應用僅僅需要50~60MHz的帶寬,在該頻段內的任何信號都會對噪聲有所貢獻,你可以利用反饋電阻來調節你的器件的頻率響應。在如此有限的帶寬內,利用如此高速的放大器的原因在於它提供優異的信號保真度。

圖3:建議反饋電阻與正相增益的關係

圖3來自相同器件的數據表,該圖說明了對給定正相增益的推薦反饋電阻。正如預期的那樣,對增益為2的放大器推薦採用300Ω的電阻,它具有最佳的增益平坦度、建立時間和速度的組合。此外,從該圖中可以看到,對增益為1的放大器需要採用600Ω的反饋電阻來獲得最優化的性能。這是因為環路增益非常高,較大的電阻值對於穩定性是必需的。這就是與電壓反饋架構的主要差異。電流反饋放大器在使用時不能把輸出與反相輸入短路連接。

數據表上指定的最常用的電阻是針對增益為2的放大器。然而,你可以從圖2中看到,你最終使用的實際數值有很大的靈活性,在數據表中所推薦的數值是在性能表和曲線中公布的規範所使用的數值。

如圖3所示,對於增益為5的放大器,RF下降到200Ω。該增益設置電阻現在僅僅是50Ω,所以我們獲得的輸入緩衝電阻和增益設置電阻的值相近。這就降低了運放的閉環互阻抗,並將隨著增益的提高而開始限制帶寬。在增益為8時,我們要把反饋電阻提高到275Ω。對於更高的增益,一旦不能降低反饋電阻來提高增益,帶寬將受到損失,而且放大器開始呈現電壓反饋放大器的特性。


相關焦點

  • 比較器的典型應用電路,如何區分比較器與運放,比較器與運放的差異
    運放是運算放大器的簡稱。在實際電路中,通常結合反饋網絡共同組成某種功能模塊。由於早期應用於模擬計算機中,用以實現數學運算,故得名「運算放大器」,此名稱一直延續至今。ns 數量級,而運放翻轉速度一般為us 數量級(特殊的高速運放除外)。
  • 預防雷射器電流過衝的V/I變換電路設計
    在一些驅動電路中,有些器件特性與電流成線性關係,為電流型驅動器件。這些器件(如半導體雷射器)在不適當的工作條件下,可能會造成性能的急劇惡化乃至失效(如有些雷射器在極短時間內的電流過衝都就有可能導致雷射器損壞)。
  • 串聯電路反饋與並聯電路反饋的區別和特點
    故它們均引入了串聯反饋。 應用實例 在如下圖所示兩電路中,集成運放的淨輸入電流 在電壓負反饋電路中,反饋量取自輸出電壓,並與之成比例;在電流負反饋電路中,反饋量取自輸出電流,並與之成比例。 判斷方法:令負反饋放大電路的輸出電壓uO為零,若反饋量也隨之為零,則說明引入了電壓負反饋;若反饋量依然存在,則說明電路中引入了電流負反饋。 如下圖(a)所示電路中引入了交流負反饋,輸入電流iI與反饋電流iF如圖中所標註。令輸出電壓uO=0,即將集成運放的輸出端接地,便得到圖(b)所示電路。
  • 集成運放的偏置電路圖解析
    集成運放電路中的恆流偏置電流是如何工作的   集成運放中為了使各級電路均有穩定的靜態工作點,不是採用給電晶體b- e間或場效應管g-s間加偏置電壓來決定輸出迴路電流,而是為每級放大管輸出迴路注入恆定電流(Icg,Isg 或Idg;Isg)的方法來設置Q點,這種方法在具有恆流源的差分放大電路中曾採用過。
  • 運放OPA549放大電路電流源
    運放OPA549 放大電路電流源。該器件的主要特點: 輸出電流大, 連續輸出電流可達8 A, 峰值電流可達10 A; 工作電壓範圍寬, 單電源為+8 V~+60 V, 雙電源為±4 V~±60 V; 輸出電壓擺動大;有過熱關閉功能, 電流極限可調; 有使能及禁止功能; 有過熱關閉指示; 轉換效率( 壓擺率) 最高為9 V/μs ; 工作溫度範圍為-40℃~+85℃。
  • 運放的輸入失調電壓電流怎麼計算
    如果將輸出端的失調電壓除以電路的噪聲增益,得到結果稱為輸入失調電壓或輸入參考失調電壓。這個特性在數據表中通常以 VOS給出。VOS被等效成一個與運放反相輸入端串聯的電壓源。必須對放大器的兩個輸入端施加差分電壓,以產生 0V 輸出。 溫度漂移(Drift) Vos隨著溫度的變化而改變,這種現象稱為漂移,漂移的大小隨時間而變化。
  • 經典運放電路分析
    運算放大器組成的電路五花八門,令人眼花瞭亂,是模擬電路中學習的重點。在分析它的工作原理時倘沒有抓住核心,往往令人頭大。為此本人特搜羅天下運放電路之應用,來個「庖丁解牛」,希望各位看完後有所斬獲。因此流入運放輸入端的電流往往不足1uA,遠小於輸入端外電路的電流。故 通常可把運放的兩輸入端視為開路,且輸入電阻越大,兩輸入端越接近開路。「虛斷」是指在分析運放處於線性狀態時,可以把兩輸入端視為等效開路,這一特性 稱為虛假開路,簡稱虛斷。顯然不能將兩輸入端真正斷路。
  • 如何區分運放反饋是電壓還是電流反饋?
    一種回答是它指的是一種過程,即檢測想要影響的某種信號,並將其一部分反饋到電路中前面的某個點,從而可以施加某種控制。圖1示出了兩種信號路線的四種經典電路:放大器的反饋和激勵。我們說反饋源要麼是並聯導出(負載兩端的電壓),要麼是串聯導出(通過負載的電流,表現為與負載串聯的阻抗兩端的電壓)。fvWednc我們還談到串聯和並聯反饋,其中的信號與激勵信號串聯或並聯。
  • 學霸帶你飛 | 這些運放基本電路全解析,了解一下
    在有些應用中可以忽略緩衝運放。  在下文中,有一些電路的虛地必須要由兩個電阻產生,但是其實這並不是完美的方法。在這些例子中,電阻值都大於100K,當這種情況發生時,電路圖中均有註明。一般的來說普通的應用中阻值在K 歐級到100K 歐級是比較合適的。高速的應用中阻值在100 歐級到1K 歐級,但他們會增大電源的消耗。便攜設計中阻值在1 兆級到10 兆歐級,但是他們將增大系統的噪聲。用來選擇調整電路參數的電阻電容值的基本方程在每張圖中都已經給出。如果做濾波器,電阻的精度要選擇1% E -96系列(參看附錄A)。一但電阻值的數量級確定了,選擇標準的E-12系列電容。
  • 還在為電路的莫名噪聲頭疼?運放噪聲100問幫你解困
    電流噪聲流經與放大器相連的電阻,產生電壓噪聲。一般來說,放大器的輸入偏置電流越高,則電流噪聲越高。 圖2顯示具有一定源電阻的電壓跟隨器配置,運算放大器的電流噪聲會與信號源電阻相互作用,在輸出端產生一定的額外噪聲。圖3顯示反饋路徑中的電阻如何與電流噪聲相互作用,電流噪聲流經反饋電阻的並聯組合,在輸入端產生一個額外噪聲源,然後此噪聲源經放大器放大到達輸出端。
  • 關於運放的參數和選擇
    本文講述運放的參數和選擇方面的知識,希望對有需要的讀者有幫助。本文引用地址:http://www.eepw.com.cn/article/282511.htm  偏置電壓和輸入偏置電流  在精密電路設計中,偏置電壓是一個關鍵因素。
  • 16個問答講透了運放的秘密
    「虛短」 要在特定的電路中才能實現。  「虛短」 存在的條件是:  1 ) 運放的開環增益A 要足夠大;  2 ) 要有負反饋電路。  明白了「虛短」 得條件後我們就很容易判斷什麼時候能什麼時候不能用「虛短」 作電路分析了。在實際上,條件( 1 ) 對絕大多數運放都是成立的,關鍵要看工作區域。
  • 運放加偏置電壓電路圖分析
    1)偏置電路   在TI公司LM358的數據手冊中,運放內部的偏置電路已經全部用等效電流源替代。這些電流源分別為整個電路提供合適的靜態工作點,或作為有源負載。Q10,Q11雖然不能放大電壓,但是具有很大的電流放大倍數,可以為Q12提供更大的基極電流,同時100A的電流源也作為Q12的有源負載使中間級有很大的放大能力。   4)輸出級   輸出級分為2種情況。當雙電源供電時由Q5,Q6,Q13組成互補輸出級但是存在交越失真。當單電源供電時Q5,Q6組成兩級射級跟隨電路,使輸出級具有很低的輸出電阻。
  • 集成運放MC4558內部電路分析
    從本質上講,集成運放是一種高性能直接耦合放大電路,雖然內部結構各不相同,但是它們的基本組成部分、結構形式、組成原則基本一致,幾無例外的是輸入級均採用差動放大器。MC4558是應用最為廣泛的通用型8腳集成運放,常見封裝形式為SOP8(貼片)和雙列直插(DIP8)兩種,如圖1所示。
  • 運放和電壓比較器的本質區別
    二、運算放大器和比較器如出一轍,簡單的講,比較器就是運放的開環應用,但比較器的設計是針對電壓門限比較而用的,要求的比較門限精確,比較後的輸出邊沿上升或下降時間要短,輸出符合TTL/CMOS電平/或OC等,不要求中間環節的準確度,同時驅動能力也不一樣。一般情況:用運放做比較器,多數達不到滿幅輸出,或比較後的邊沿時間過長,因此設計中少用運放做比較器為佳。
  • 【FAE分享】電流源電路之幾種電流源參考設計
    TI的產品線應用工程師,也設計出幾款經典的電流源電路,最小是5uA,最大2A。每一個方案都給出了完整的原理圖,仿真文件,PCB layout以及測試結果。 接下來對這幾個方案一一做一下簡單介紹,並給出網絡連結地址,方便大家查詢和參考使用。1.
  • 4種常見恆流源電路分析及應用
    四種恆流源電路分析:在改進型差動放大器中,用恆流源取代射極電阻RE,既為差動放大電路設置了合適的靜態工作電流,又大大增強了共模負反饋作用,使電路具有了更強的抑制共模信號的能力,且不需要很高的電源電壓,所以,恆流源和差動放大電路簡直是一對絕配!
  • 運放電路之同相放大器
    板級集成運放的應用同相放大器電路同相放大器電路的定義:信號從運放同相端輸入,輸出信號的一部分通過反饋電阻接到運放的反相輸入端,構成負反饋。同時運放反相端通過電阻接地(或接基準電壓,其中基準電壓等於電源電壓的一半)所構成的電路。同相放大器電路的特性:1.輸入阻抗很高,為兆歐級。所以對微弱小信號的放大來說,同相放大器電路是不錯的選擇。2.輸出阻抗極小,為數歐或十幾歐姆。有一定的帶負載能力。
  • 運放參數解釋及經常使用運放選型
    輸入偏置電流Ios: 輸入偏置電流定義為當運放的輸出直流電壓為零時,其兩輸入端的偏置電流平均值。輸入偏置電流對進行高阻信號放大、積分電路等對輸入阻抗有要求的地方有較大的影響。
  • 如何將雙電源的電路轉換成單電源電路
    我們經常看到很多非常經典的運算放大器應用圖集,但是這些應用都建立在雙電源的基礎上,很多時候,電路的設計者必須用單電源供電,但是他們不知道該如何將雙電源的電路轉換成單電源電路。 在設計單電源電路時需要比雙電源電路更加小心,設計者必須要完全理解這篇文章中所述的內容。