圖片來自:newsnetwork.mayoclinic.org
2016年2月26日/生物谷BIOON/--荷蘭科學家近期報導了關於抗癌研究的新進展,可以利用「核糖體分析」(ribosome profiling)並構建一種名為「diricore」的方法。該方法可以區分出核糖體的密碼子。利用這個方法,可以檢測出不同的細胞內,核糖體對於不同類型胺基酸的需求,從而確定出哪些胺基酸對於細胞而言更加重要。了解到這些胺基酸可能會利用我們開發出新的抗癌方法。相關研究發表在近期的《Nature》上。
腫瘤的生長和代謝適應可能會限制某些胺基酸蛋白質合成的可用性。因為對於特定胺基酸的依賴,導致了腫瘤細胞生存存在危機,從而可能成為抗癌的新方向。最近已經表明,某些類型的癌細胞依賴於甘氨酸、穀氨醯胺、亮氨酸和絲氨酸代謝,來完成增殖和生存。此外,使用右旋天冬氨酸合成酶誘導的天冬氨酸缺乏,已經被開發成為急性淋巴細胞白血病的治療方法。然而,現在還沒有方法可以檢測不同的癌細胞會因為哪些胺基酸缺乏導致生長受阻。
研究人員使用核糖體分析,來檢測限制性胺基酸。所謂的限制性胺基酸,即為該類型胺基酸的缺乏會明顯阻礙細胞的生長。他們還開發了一項名為"diricore"的方法,可以用於區分核糖體中的密碼子類型。他們首先證明了"diricore"的功能和缺陷。研究人員使用代謝抑制劑和營養剝奪測定法來了解"diricore"的不足。值得注意的是,通過使用右旋天冬氨酸酶的誘導,研究人員利用"diricore"檢測到了核糖體中高水平的天冬氨酸密碼子和高濃度的天冬氨酸合成酶。
在腎癌中發現,脯氨酸是一種限制性的胺基酸。同時還發現高水平的天冬氨酸密碼子與高水平PYCR1相關,該PYCR1是脯氨酸合成的關鍵酶。這表明脯氨酸前體對於腎癌細胞是非常重要的。事實上,高濃度的PYCR1是由脯氨酸前體短缺引起的,抑制該酶會抑制腎癌細胞增殖。高濃度的PYCR1在浸潤性乳腺癌中也經常出現。進一步的研究表明,PYCR1的CRISPR介導的基因敲除,可以阻礙致瘤生長。因此,「diricore」方法可能揭示不同癌細胞中存在哪些類型的限制性胺基酸,這些胺基酸可用於靶向治療癌症的新途徑。(生物谷Bioon.com)
本文系生物谷原創編譯整理,歡迎轉載!點擊 獲取授權 。更多資訊請下載生物谷APP。
doi:10.1038/nature16982
PMC:
PMID:
Tumour-specific proline vulnerability uncovered by differential ribosome codon reading
Tumour growth and metabolic adaptation may restrict the availability of certain amino acids for protein synthesis. It has recently been shown that certain types of cancer cells depend on glycine, glutamine, leucine and serine metabolism to proliferate and survive1, 2,3, 4. In addition, successful therapies using L-asparaginase-induced asparagine deprivation have been developed for acute lymphoblastic leukaemia5. However, a tailored detection system for measuring restrictive amino acids in each tumour is currently not available. Here we harness ribosome profiling6 for sensing restrictive amino acids, and develop diricore, a procedure for differential ribosome measurements of codon reading. We first demonstrate the functionality and constraints of diricore using metabolic inhibitors and nutrient deprivation assays. Notably, treatment with L-asparaginase elicited both specific diricore signals at asparagine codons and high levels of asparagine synthetase (ASNS). We then applied diricore to kidney cancer and discover signals indicating restrictive proline. As for asparagine, this observation was linked to high levels of PYCR1, a key enzyme in proline production7, suggesting a compensatory mechanism allowing tumour expansion. Indeed, PYCR1 is induced by shortage of proline precursors, and its suppression attenuated kidney cancer cell proliferation when proline was limiting. High PYCR1 is frequently observed in invasive breast carcinoma. In an in vivo model system of this tumour, we also uncover signals indicating restrictive proline. We further show that CRISPR-mediated knockout of PYCR1 impedes tumorigenic growth in this system. Thus, diricore has the potential to reveal unknown amino acid deficiencies, vulnerabilities that can be used to target key metabolic pathways for cancer treatment.