2012年8月13日 訊 /生物谷BIOON/ --星形膠質細胞(astrocyte)之前被認為是神經元的輔助性細胞,如今研究人員發現它們自己能夠給發送化學信號而不是電信號。它們將這些化學信號發送給神經元、血管細胞和其他星形膠質細胞來改善突觸信號傳送效率。日本理化研究所腦科學研究院研究員Katsuhiko Mikoshiba和Hiroko Bannai領導的一個研究小組描述了允許星形膠質細胞給它們網絡中的每個細胞發送信號的機制。
星形膠質細胞擁有一個位於中間的胞體(soma)和許多個射線狀臂(ray-like arm),而且這些射線狀臂連接到它們調節的細胞上。健康的星形膠質細胞通過每個射線狀臂發送相互獨立的鈣離子信號。已知這些信號受到細胞膜中一種被稱作代謝型穀氨酸受體(metabotropic glutamate receptor, mGluR5)的受體的調節,但是科學家們不清楚的是如何將這些信號分解為單個鈣離子信號。理解這種特異性可能在治療上具有重要意義,這是因為在受到阿爾茨海默病或癲癇症影響的大腦中,星形膠質細胞發送全局性信號,打個比方而言,這種全局性信號更像是擴音器廣播,而健康星形膠質細胞發送的信號類似於電話呼叫。
為了理解星形膠質細胞信號如何受到調節,研究人員對單個mGluR5受體進行量子點---當激發時能夠發光的半導體納米晶體---標記,然後觀察這些受體如何穿過細胞膜。視頻畫面揭示mGluR5受體並不從射線狀臂到達胞體。在正常星形膠質細胞中,mGluR5選擇性擴散屏障能夠通過鈣離子信號區室化來允許每個射線狀臂獨立地調節它的接觸夥伴。
為了研究這種擴散屏障的特徵,Mikoshiba研究團隊試圖破壞它。過度表達的mGluR5覆蓋著這種擴散屏障,據此,他們推斷這種屏障是由與mGluR5胞質部分相互作用的蛋白組成的。每個屏障蛋白與單個mGluR5分子配對,從而阻止它跨到胞體中。然而,屏障蛋白的數量是有限的,過量的mGluR5讓一些受體能夠自由地跨進胞體,因而能夠讓全局性信號通過星形膠質細胞中的每個射線狀臂。
阿爾茨海默病和癲癇症實驗性動物模型證實星形膠質細胞擁有高濃度的mGlu5分子。研究人員相信理解這種擴散屏障的分子特徵將有助於人們找到用於治療這些疾病的新靶標。一旦揭示出這種屏障的分子特徵,他們希望構建出一種缺乏星形膠質細胞屏障蛋白的轉基因小鼠。Mikoshiba說,「我們非常吃驚地了解到全局性星形膠質細胞鈣離子信號對神經元網絡和神經-血管耦合(neuro-vascular coupling)的影響。」(生物谷:Bioon.com)
本文編譯自A new starring role for astrocytes
Receptor-Selective Diffusion Barrier Enhances Sensitivity of Astrocytic Processes to Metabotropic Glutamate Receptor Stimulation
Misa Arizono1,2, Hiroko Bannai1*, Kyoko Nakamura3,4, Fumihiro Niwa1,5, Masahiro Enomoto1, Toru Matsu-ura1, Akitoshi Miyamoto1,2, Mark W. Sherwood1, Takeshi Nakamura3, and Katsuhiko Mikoshiba
Metabotropic glutamate receptor (mGluR)–dependent calcium ion (Ca2+) signaling in astrocytic processes regulates synaptic transmission and local blood flow essential for brain function. However, because of difficulties in imaging astrocytic processes, the subcellular spatial organization of mGluR-dependent Ca2+ signaling is not well characterized and its regulatory mechanism remains unclear. Using genetically encoded Ca2+ indicators, we showed that despite global stimulation by an mGluR agonist, astrocyte processes intrinsically exhibited a marked enrichment of Ca2+ responses. Immunocytochemistry indicated that these polarized Ca2+ responses could be attributed to increased density of surface mGluR5 on processes relative to the soma. Single-particle tracking of surface mGluR5 dynamics revealed a membrane barrier that blocked the movement of mGluR5 between the processes and the soma. Overexpression of mGluR or expression of its carboxyl terminus enabled diffusion of mGluR5 between the soma and the processes, disrupting the polarization of mGluR5 and of mGluR-dependent Ca2+ signaling. Together, our results demonstrate an mGluR5-selective diffusion barrier between processes and soma that compartmentalized mGluR Ca2+ signaling in astrocytes and may allow control of synaptic and vascular activity in specific subcellular domains.