在最新發表於《Hypertension》期刊的研究中,牛津大學科學家們開發出一種估計我們真實基礎血壓的新方法。這種方法能夠克服臨床環境中可能導致誤導結果的常見問題。
醫務人員會經常進行血壓測量,從而了解我們的健康狀況。危險的高血壓會導致嚴重問題,比如心臟病發作或腦卒中。血壓水平全天都在波動,而且很容易因壓力、體育運動,甚至是講話等活動而改變。在醫生門診測量的血壓數值常常與在家裡測量的結果不一致,而門診測量的結果被認為能夠更好地反映真實的基礎血壓水平。
該研究領導者James Sheppard博士說:"存在被稱為'白大褂效應'的現象,門診中血壓測量的結果高於家中的測量結果。這可能導致人們接受他們並不真正需要的降血壓治療。還存在反向效應--有些患者門診中血壓測量的結果低於他們通常生活中的測量結果,這意味著他們會錯過可能從中獲益的治療。理解並統計這些家庭-門診差異的規模,可能改進(高血壓)的診斷和治療。"
研究團隊因此分析了來自超過2000位患者的數據,查看包括年齡、性別、身體質量指數、飲酒和吸菸等多方面因素。他們還研究了來自門診測量的多個讀數的若干"血壓特性",包括第一個和最後一個讀數的差異,以及其他讀數之中的血壓變化率。研究人員使用大約900位患者的數據建立了一個模型,識別那些影響家庭和門診之間血壓讀數差異的因素。隨後通過核查研究中其他患者的數據,對該模型進行驗證。
結果表明這是一個預測模型,(能夠)使用患者單次就診中測量的3個獨立血壓讀數和基本患者特徵,來給出調整的血壓讀數。調整後的讀數比現有識別高血壓的模型明顯更為準確。
Sheppard博士解釋說:"我們將我們模型的準確性與目前英國NICE指南和美國、加拿大及歐洲使用的模型進行了比較。我們的模型正確歸類了93%的病例,次好的是NICE指南,正確歸類了78%的患者。"
"準確判斷是非屬於高血壓,對於患者而言是很重要的--確保那些需要治療的患者及時得到治療。也許同樣重要的是,這種方法能夠防止醫務人員治療那些因為'白大褂效應'而並不真正需要治療的患者。通過對患者血壓進行更有效的治療,還可能減少遭受心臟病發作和腦卒中侵襲的患者數量。"(生物谷Bioon.com)
DOI:10.1161/HYPERTENSIONAHA.115.07108
Predicting Out-of-Office Blood Pressure in the Clinic (PROOF-BP)
Patients often have lower (white coat effect) or higher (masked effect) ambulatory/home blood pressure readings compared with clinic measurements, resulting in misdiagnosis of hypertension. The present study assessed whether blood pressure and patient characteristics from a single clinic visit can accurately predict the difference between ambulatory/home and clinic blood pressure readings (the home-clinic difference). A linear regression model predicting the home-clinic blood pressure difference was derived in 2 data sets measuring automated clinic and ambulatory/home blood pressure (n=991) using candidate predictors identified from a literature review. The model was validated in 4 further data sets (n=1172) using area under the receiver operator characteristic curve analysis. A masked effect was associated with male sex, a positive clinic blood pressure change (difference between consecutive measurements during a single visit), and a diagnosis of hypertension. Increasing age, clinic blood pressure level, and pulse pressure were associated with a white coat effect. The model showed good calibration across data sets (Pearson correlation, 0.48-0.80) and performed well-predicting ambulatory hypertension (area under the receiver operator characteristic curve, 0.75; 95% confidence interval, 0.72-0.79 [systolic]; 0.87; 0.85-0.89 [diastolic]). Used as a triaging tool for ambulatory monitoring, the model improved classification of a patient's blood pressure status compared with other guideline recommended approaches (93% [92% to 95%] classified correctly; United States, 73% [70% to 75%]; Canada, 74% [71% to 77%]; United Kingdom, 78% [76% to 81%]). This study demonstrates that patient characteristics from a single clinic visit can accurately predict a patient's ambulatory blood pressure. Usage of this prediction tool for triaging of ambulatory monitoring could result in more accurate diagnosis of hypertension and hence more appropriate treatment.