三角函數公式大全

2020-12-03 中考網

  銳角三角函數公式

  sin α=∠α的對邊 / 斜邊

  cos α=∠α的鄰邊 / 斜邊

  tan α=∠α的對邊 / ∠α的鄰邊

  cot α=∠α的鄰邊 / ∠α的對邊

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (註:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推導

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

   歡迎使用手機、平板等行動裝置訪問中考網,2020中考一路陪伴同行!>>點擊查看

相關焦點

  • 2019中考初三數學:銳角三角函數公式大全
    銳角三角函數公式大全 銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),餘割(csc)都叫做角A的銳角三角函數。為了大家的複習,我們 網特整理了關於銳角三角形函數公式總結大全,供大家參考!
  • 高中數學:三角函數公式大全!一輪複習必備!尖子生人手一份
    三角函數在高中數學中難度不算很大,但是絕對是高考常考必考題型,算中檔題,高考在該部分一般有兩個試題。一個試題是,如果在解答題部分沒有涉及到正、餘弦定理的考查,會有一個與正餘弦定理有關的題目,如果在解答題中涉及到了正、餘弦定理,可能是一個和解答題相互補充的三角函數圖像、性質、恆等變換的題目;一個試題是以考查平面向量為主的試題。高考題目中,三角函數難度不大,拿分比較簡單,誘導公式是解決三角函數問題的前提,你都掌握了嗎?
  • 很全面的三角函數公式及推導過程(名家收藏)
    一、三角函數的定義三角函數是基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變量,角度對應任意角終邊與單位圓交點坐標或其比值為因變量的函數。也可以等價地用與單位圓有關的各種線段的長度來定義。(一)、三角函數的圖像和性質
  • 2018中考數學知識點:三角函數的公式
    下面是《2018中考數學知識點:三角函數的公式》,僅供參考!   三角函數的公式     關於初中三角函數公式,在考試中用的最多的就是特殊三角度數的特殊值。2     tan30°=√3/3     tan45°=1     tan60°=√3[1]     cot30°=√3     cot45°=1     cot60°=√3/3     其次就是兩角和公式
  • 高中數學三角函數題型總結歸納,同角三角函數及誘導公式
    三角函數裡面的公式較多,題型也不少。所以這是高中數學裡既要記憶又要理解的章節。三角函數總共由28個考點需要掌握,分別是:專題一:象限角及終邊相同的角考點1:象限角的表示考點2:已知終邊求角度考點3:半角平分法確定象限專題二:扇形的相關公式考點4:扇形的相關公式專題三:三角函數的定義考點5:終邊過定點問題考點6:三角函數線法解三角不等式考點
  • 2021初中七年級數學三角函數公式:函數公式
    中考網整理了關於2021初中七年級數學三角函數公式:函數公式,希望對同學們有所幫助,僅供參考。
  • 2021初中八年級數學三角函數公式:特殊值
    中考網整理了關於2021初中八年級數學三角函數公式:特殊值,希望對同學們有所幫助,僅供參考。cos30°=3/2   cos45°=2/2   cos60°=1/2   tan30°=3/3   tan45°=1   tan60°=3[1]   cot30°=3   cot45°=1   cot60°=3/3   其次就是兩角和公式
  • 高中數學:常用三角函數誘導公式總結,解題利器,及時掌握
    很多同學都在學好函數專題,但是由於三角函數難度較大,許多同學都打起了退堂鼓。三角函數的難點在於其公式眾多,性質眾多,需要花時間去記憶,所以同學們要學好該專題就要花費大量時間去進行記憶、練習。誘導公式是三角函數的一大重要部分,其主要作用是把任意角的三角函數轉成銳角三角形,這樣更加便於同學們去進行計算。然而誘導公式眾多,課本也沒有系統的總結歸納,就導致許多同學記混淆。
  • 誘導公式和同角三角函數關係很難學?那是你沒有掌握方法
    同角三角函數關係和誘導公式解題技巧(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,歡迎轉發幫助更多學子!!!)同角三角函數關係式和誘導公式在三角函數的化簡求值、證明以及解答題中都有很重要的應用,是三角函數中必須掌握的兩類公式和技巧。
  • 圖解經典口訣,輕鬆牢記高中同角三角函數基本關係式與誘導公式
    思考:同角三角函數基本關係式對任意角α都成立嗎?是的,前提是關係式中每個α的三角函數都有意義,如tanα時α≠π/2。2. 三角函數誘導公式1) 誘導公式的意義即將角「k×(π/2)+α」的三角函數轉換為α的三角函數。這個轉換過程常涉及兩個問題:① 三角函數名稱如何變化?② 三角函數值的正負號如何變化?
  • 2018初中數學知識點:三角函數七倍角公式
    下面是《2018初中數學知識點:三角函數七倍角公式》,僅供參考!   七倍角公式     sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA
  • 初中數學三角函數知識點匯總
    點擊查看 2 2020年中考數學知識點:三角函數積化和差公式 點擊查看 3 2020年中考數學知識點:三角函數萬能公式
  • 2018初中數學知識點:三角函數二倍角公式
    下面是《2018初中數學知識點:三角函數二倍角公式》,僅供參考!   二倍角公式     正弦     sin2A=2sinA·cosA     餘弦     1.Cos2a=Cos^2(a)-Sin^2(a)     2.Cos2a=1-2Sin^2(a)     3.Cos2a=
  • 高中數學三角函數公式輕鬆記:正切餘切兩角和差公式的推導與記憶
    上文介紹了正弦和餘弦的兩角和差公式的口訣記憶法,通過介紹口訣如何來的,我們知道為何口訣可以輕鬆有效地記憶和掌握正餘弦的兩角和差公式。本文繼續介紹兩角和差公式中的正切餘切公式。我們知道正切就是正弦除以餘弦,而餘切是正切的倒數,即餘切等於餘弦除以正弦。
  • 高中數學複習之三角函數與三角形
    講到三角函數一定必講角,我們先來談談角。對於角,我們要掌握的是任意角的定義,這個很簡單,我不說了。對於任意角的三角函數,我簡單給一個表達式:大家看一下就可以,也很簡單!圖中的題是易錯題,別做錯了!角講完了,講三角函數,三角函數裡面重要有幾個:兩角和差的公式,誘導公式,三角函數的平移伸縮,三角函數看圖寫表達式!我們一個個說一下。首先是兩角和與差的公式,我都有推過,大家可以去看我的文章,有詳細的推導過程!其次,誘導公式,這個建議大家在處理的時候,直接記下來!實在沒把握,草稿紙上用兩角和與差的公式,這個是最次的了方法了!
  • 高中數學:三角函數的圖像和性質歸類解析(高考必備)
    三角函數是高中數學的主幹知識,也是高考重點考查的內容之一,而三角函數的圖像和性質更是高考考查的熱點,題型既有選擇題、填空題,又有解答題。下面就近幾年的高考題中考查三角函數的圖像和性質的有關問題進行歸類解析,以幫助大家更好地學習及掌握這一知識。
  • 三角函數圖像與性質及函數y=Asin(ωx+∮)的圖像變換的深度剖析
    那多公式,我至今不記得,學過就忘掉。。。。。。卻是,如上圖,三角公式是整個高中數學章節中結論最多,公式最多的一個章節, 如何做到不記憶公式而能達到熟練應用公式而解題的目的呢?還是一句話,只有站在理解的程度上,才能融匯貫通,一通百通,無敵於天下。還有就是巧記,利用一些口訣和圖形,幫助我們來記憶和理解,相信上面這個圖大家記憶尤深。
  • 高中數學基礎微練—兩角和與差的正弦、餘弦及正切公式綜合應用
    兩角和與差的正弦、餘弦及正切公式是三角函數變換的基礎,三角函數內容有「三部曲」,一是三角函數的話劇求值;二是圖像和性質;三是三角形中的三角函數問題。以上三個問題都需要用到兩角和與差的正弦、餘弦及正切公式進行化簡、變換,下面就公式的一些基本運用加以辨析。
  • 向量在三角函數中運用,求bc最小值?不是最大值!要這樣轉化才行
    圖一這道題的第一問是求三角函數的角A度數大小,而角A的大小就是要從式子(cosA)^2+cosA·cos(C-B)=sinB·sinC入手得出結論。這裡需要具有構建的思想,而三角函數構建的思想:要麼就是結合正弦定理變形,要麼就是結合餘弦定理進行變形。而這道題這兩種構建不行是不行的,那該怎麼辦呢?我們只能以簡化該式子為出發點進行變形。簡化的方法就是根據兩角積化和差公式的特點入手,將cosA轉化成cos(B+C)的形式與cos(C-B)進行消元化簡。
  • 教學研討|1.2.2 同角三角函數的基本關係
    ▍來源:網絡研討素材一一、教學目標1、知識目標:把握同角三角函數的基本關係式;2、能力目標:能用同角三角函數的基本關係式化簡或證明三角函數的恆等式;3、情感價值觀:通過小組探究合作,體驗觀察、分析、歸納等數學學習中的基本方法