允中編譯整理
量子位出品|公眾號QbitAI
自從Goodfellow2014年提出這個想法之後,生成對抗網絡(GAN)就成了深度學習領域內最火的一個概念,包括LeCun在內的許多學者都認為,GAN的出現將會大大推進AI向無監督學習發展的進程。
於是,研究GAN就成了學術圈裡的一股風潮,幾乎每周,都有關於GAN的全新論文發表。而學者們不僅熱衷於研究GAN,還熱衷於給自己研究的GAN起名,比如什麼3D-GAN、BEGAN、iGAN、SGAN……千奇百怪、應有盡有。
今天,量子位決定帶大家逛逛GANs的動物園(園長:AvinashHindupur),看看目前世界上到底存活著多少GAN。
GAN—GenerativeAdversarialNetworks
3D-GAN—LearningaProbabilisticLatentSpaceofObjectShapesvia3DGenerative-AdversarialModeling
AdaGAN—AdaGAN:BoostingGenerativeModels
AffGAN—AmortisedMAPInferenceforImageSuper-resolution
ALI—AdversariallyLearnedInference
AMGAN—GenerativeAdversarialNetswithLabeledDatabyActivationMaximization
AnoGAN—UnsupervisedAnomalyDetectionwithGenerativeAdversarialNetworkstoGuideMarkerDiscovery
ArtGAN—ArtGAN:ArtworkSynthesiswithConditionalCategorialGANs
b-GAN—b-GAN:UnifiedFrameworkofGenerativeAdversarialNetworks
BayesianGAN—DeepandHierarchicalImplicitModels
BEGAN—BEGAN:BoundaryEquilibriumGenerativeAdversarialNetworks
BiGAN—AdversarialFeatureLearning
BS-GAN—Boundary-SeekingGenerativeAdversarialNetworks
CGAN—TowardsDiverseandNaturalImageDescriptionsviaaConditionalGAN
CCGAN—Semi-SupervisedLearningwithContext-ConditionalGenerativeAdversarialNetworks
CatGAN—UnsupervisedandSemi-supervisedLearningwithCategoricalGenerativeAdversarialNetworks
CoGAN—CoupledGenerativeAdversarialNetworks
Context-RNN-GAN—ContextualRNN-GANsforAbstractReasoningDiagramGeneration
C-RNN-GAN—C-RNN-GAN:Continuousrecurrentneuralnetworkswithadversarialtraining
CVAE-GAN—CVAE-GAN:Fine-GrainedImageGenerationthroughAsymmetricTraining
CycleGAN—UnpairedImage-to-ImageTranslationusingCycle-ConsistentAdversarialNetworks
DTN—UnsupervisedCross-DomainImageGeneration
DCGAN—UnsupervisedRepresentationLearningwithDeepConvolutionalGenerativeAdversarialNetworks
DiscoGAN—LearningtoDiscoverCross-DomainRelationswithGenerativeAdversarialNetworks
DualGAN—DualGAN:UnsupervisedDualLearningforImage-to-ImageTranslation
EBGAN—Energy-basedGenerativeAdversarialNetwork
f-GAN—f-GAN:TrainingGenerativeNeuralSamplersusingVariationalDivergenceMinimization
GoGAN—GangofGANs:GenerativeAdversarialNetworkswithMaximumMarginRanking
GP-GAN—GP-GAN:TowardsRealisticHigh-ResolutionImageBlending
IAN—NeuralPhotoEditingwithIntrospectiveAdversarialNetworks
iGAN—GenerativeVisualManipulationontheNaturalImageManifold
IcGAN—InvertibleConditionalGANsforimageediting
ngUsingaConditionalGenerativeAdversarialNetwork
ImprovedGAN—ImprovedTechniquesforTrainingGANs
InfoGAN—InfoGAN:InterpretableRepresentationLearningbyInformationMaximizingGenerativeAdversarialNets
LR-GAN—LR-GAN:LayeredRecursiveGenerativeAdversarialNetworksforImageGeneration
LSGAN—LeastSquaresGenerativeAdversarialNetworks
LS-GAN—Loss-SensitiveGenerativeAdversarialNetworksonLipschitzDensities
MGAN—PrecomputedReal-TimeTextureSynthesiswithMarkovianGenerativeAdversarialNetworks
MAGAN—MAGAN:MarginAdaptationforGenerativeAdversarialNetworks
MalGAN—GeneratingAdversarialMalwareExamplesforBlack-BoxAttacksBasedonGAN
MARTA-GAN—DeepUnsupervisedRepresentationLearningforRemoteSensingImages
McGAN—McGan:MeanandCovarianceFeatureMatchingGAN
MedGAN—GeneratingMulti-labelDiscreteElectronicHealthRecordsusingGenerativeAdversarialNetworks
MIX+GAN—GeneralizationandEquilibriuminGenerativeAdversarialNets(GANs
MPM-GAN—MessagePassingMulti-AgentGANs
MV-BiGAN—Multi-viewGenerativeAdversarialNetworks
pix2pix—Image-to-ImageTranslationwithConditionalAdversarialNetworks
PPGN—Plug&PlayGenerativeNetworks:ConditionalIterativeGenerationofImagesinLatentSpace
PrGAN—3DShapeInductionfrom2DViewsofMultipleObjects
—TextureSynthesiswithSpatialGenerativeAdversarialNetworks
SAD-GAN—SAD-GAN:SyntheticAutonomousDrivingusingGenerativeAdversarialNetworks
SalGAN—SalGAN:VisualSaliencyPredictionwithGenerativeAdversarialNetworks
SEGAN—SEGAN:SpeechEnhancementGenerativeAdversarialNetwork
SeqGAN—SeqGAN:SequenceGenerativeAdversarialNetswithPolicyGradient
SketchGAN—AdversarialTrainingForSketchRetrieval
SL-GAN—Semi-LatentGAN:Learningtogenerateandmodifyfacialimagesfromattributes
SRGAN—Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork
SGAN—GenerativeImageModelingusingStyleandStructureAdversarialNetworks
SSL-GAN
StackGAN—StackGAN:TexttoPhoto-realisticImageSynthesiswithStackedGenerativeAdversarialNetworks
TGAN—TemporalGenerativeAdversarialNets
TAC-GAN—TAC-GAN—TextConditionedAuxiliaryClassifierGenerativeAdversarialNetwork
TP-GAN—BeyondFaceRotation:GlobalandLocalPerceptionGANforPhotorealisticandIdentityPreservingFrontalViewSynthesis
Triple-GAN—TripleGenerativeAdversarialNets
VGAN—GenerativeAdversarialNetworksasVariationalTrainingofEnergyBasedModels
VAE-GAN—Autoencodingbeyondpixelsusingalearnedsimilaritymetric
ViGAN—ImageGenerationandEditingwithVariationalInfoGenerativeAdversarialNetworks
WGAN—WassersteinGAN
WGAN-GP—ImprovedTrainingofWassersteinGANs
WaterGAN—WaterGAN:UnsupervisedGenerativeNetworktoEnableReal-timeColorCorrectionofMonocularUnderwaterImages
招聘