TED | 我們是如何發現DNA的

2021-03-01 TED每日推薦

00:00

Well, I thought there would be a podium, so I'm a bit scared. (Laughter) Chris asked me to tell again how we found the structure of DNA. And since, you know, I follow his orders, I'll do it. But it slightly bores me. (Laughter) And, you know, I wrote a book. So I'll say something -- (Laughter) -- I'll say a little about, you know, how the discovery was made, and why Francis and I found it. And then, I hope maybe I have at least five minutes to say what makes me tick now.

00:36

In back of me is a picture of me when I was 17. I was at the University of Chicago, in my third year, and I was in my third year because the University of Chicago let you in after two years of high school. So you -- it was fun to get away from high school -- (Laughter) -- because I was very small, and I was no good in sports, or anything like that.

01:02

But I should say that my background -- my father was, you know, raised to be an Episcopalian and Republican, but after one year of college, he became an atheist and a Democrat. (Laughter) And my mother was Irish Catholic, and -- but she didn't take religion too seriously. And by the age of 11, I was no longer going to Sunday Mass, and going on birdwatching walks with my father. So early on, I heard of Charles Darwin. I guess, you know, he was the big hero. And, you know, you understand life as it now exists through evolution.

01:46

And at the University of Chicago I was a zoology major, and thought I would end up, you know, if I was bright enough,maybe getting a Ph.D. from Cornell in ornithology. Then, in the Chicago paper, there was a review of a book called "What is Life?" by the great physicist, Schrodinger. And that, of course, had been a question I wanted to know. You know, Darwin explained life after it got started, but what was the essence of life?

02:16

And Schrodinger said the essence was information present in our chromosomes, and it had to be present on a molecule. I'd never really thought of molecules before. You know chromosomes, but this was a molecule, and somehow all the information was probably present in some digital form. And there was the big question of, how did you copy the information?

02:43

So that was the book. And so, from that moment on, I wanted to be a geneticist -- understand the gene and, through that, understand life. So I had, you know, a hero at a distance. It wasn't a baseball player; it was Linus Pauling. And so I applied to Caltech and they turned me down. (Laughter) So I went to Indiana, which was actually as good as Caltech in genetics, and besides, they had a really good basketball team. (Laughter) So I had a really quite happy life at Indiana.And it was at Indiana I got the impression that, you know, the gene was likely to be DNA. And so when I got my Ph.D., I should go and search for DNA.

03:30

So I first went to Copenhagen because I thought, well, maybe I could become a biochemist, but I discovered biochemistry was very boring. It wasn't going anywhere toward, you know, saying what the gene was; it was just nuclear science. And oh, that's the book, little book. You can read it in about two hours. And -- but then I went to a meeting in Italy. And there was an unexpected speaker who wasn't on the program, and he talked about DNA. And this was Maurice Wilkins. He was trained as a physicist, and after the war he wanted to do biophysics, and he picked DNAbecause DNA had been determined at the Rockefeller Institute to possibly be the genetic molecules on the chromosomes. Most people believed it was proteins. But Wilkins, you know, thought DNA was the best bet, and he showed this x-ray photograph. Sort of crystalline. So DNA had a structure, even though it owed it to probably different molecules carrying different sets of instructions. So there was something universal about the DNA molecule. So I wanted to work with him, but he didn't want a former birdwatcher, and I ended up in Cambridge, England.

04:41

So I went to Cambridge, because it was really the best place in the world then for x-ray crystallography. And x-ray crystallography is now a subject in, you know, chemistry departments. I mean, in those days it was the domain of the physicists. So the best place for x-ray crystallography was at the Cavendish Laboratory at Cambridge. And there I met Francis Crick. I went there without knowing him. He was 35. I was 23. And within a day, we had decided that maybe we could take a shortcut to finding the structure of DNA. Not solve it like, you know, in rigorous fashion, but build a model,an electro-model, using some coordinates of, you know, length, all that sort of stuff from x-ray photographs. But just ask what the molecule -- how should it fold up?

05:37

And the reason for doing so, at the center of this photograph, is Linus Pauling. About six months before, he proposedthe alpha helical structure for proteins. And in doing so, he banished the man out on the right, Sir Lawrence Bragg, who was the Cavendish professor. This is a photograph several years later, when Bragg had cause to smile. He certainly wasn't smiling when I got there, because he was somewhat humiliated by Pauling getting the alpha helix, and the Cambridge people failing because they weren't chemists. And certainly, neither Crick or I were chemists, so we tried to build a model. And he knew, Francis knew Wilkins. So Wilkins said he thought it was the helix. X-ray diagram, he thought was comparable with the helix.

06:23

So we built a three-stranded model. The people from London came up. Wilkins and this collaborator, or possible collaborator, Rosalind Franklin, came up and sort of laughed at our model. They said it was lousy, and it was. So we were told to build no more models; we were incompetent. (Laughter) And so we didn't build any models, and Francis sort of continued to work on proteins. And basically, I did nothing. And -- except read. You know, basically, reading is a good thing; you get facts. And we kept telling the people in London that Linus Pauling's going to move on to DNA. If DNA is that important, Linus will know it. He'll build a model, and then we're going to be scooped.

07:09

And, in fact, he'd written the people in London: Could he see their x-ray photograph? And they had the wisdom to say "no." So he didn't have it. But there was ones in the literature. Actually, Linus didn't look at them that carefully. But about, oh, 15 months after I got to Cambridge, a rumor began to appear from Linus Pauling's son, who was in Cambridge, that his father was now working on DNA. And so, one day Peter came in and he said he was Peter Pauling,and he gave me a copy of his father's manuscripts. And boy, I was scared because I thought, you know, we may be scooped. I have nothing to do, no qualifications for anything. 

07:51

And so there was the paper, and he proposed a three-stranded structure. And I read it, and it was just -- it was crap.(Laughter) So this was, you know, unexpected from the world's -- (Laughter) -- and so, it was held together by hydrogen bonds between phosphate groups. Well, if the peak pH that cells have is around seven, those hydrogen bonds couldn't exist. We rushed over to the chemistry department and said, "Could Pauling be right?" And Alex Hust said, "No." So we were happy. 

08:31

And, you know, we were still in the game, but we were frightened that somebody at Caltech would tell Linus that he was wrong. And so Bragg said, "Build models." And a month after we got the Pauling manuscript -- I should say I took the manuscript to London, and showed the people. Well, I said, Linus was wrong and that we're still in the game and that they should immediately start building models. But Wilkins said "no." Rosalind Franklin was leaving in about two months, and after she left he would start building models. And so I came back with that news to Cambridge, and Bragg said, "Build models." Well, of course, I wanted to build models. And there's a picture of Rosalind. She really, you know,in one sense she was a chemist, but really she would have been trained -- she didn't know any organic chemistry or quantum chemistry. She was a crystallographer.

09:22

And I think part of the reason she didn't want to build models was, she wasn't a chemist, whereas Pauling was a chemist. And so Crick and I, you know, started building models, and I'd learned a little chemistry, but not enough. Well, we got the answer on the 28th February '53. And it was because of a rule, which, to me, is a very good rule: Never be the brightest person in a room, and we weren't. We weren't the best chemists in the room. I went in and showed them a pairing I'd done, and Jerry Donohue -- he was a chemist -- he said, it's wrong. You've got -- the hydrogen atoms are in the wrong place. I just put them down like they were in the books. He said they were wrong.

10:07

So the next day, you know, after I thought, "Well, he might be right." So I changed the locations, and then we found the base pairing, and Francis immediately said the chains run in absolute directions. And we knew we were right. So it was a pretty, you know, it all happened in about two hours. From nothing to thing. And we knew it was big because, you know, if you just put A next to T and G next to C, you have a copying mechanism. So we saw how genetic information is carried. It's the order of the four bases. So in a sense, it is a sort of digital-type information. And you copy it by going from strand-separating. So, you know, if it didn't work this way, you might as well believe it, because you didn't have any other scheme. 

11:05

But that's not the way most scientists think. Most scientists are really rather dull. They said, we won't think about it until we know it's right. But, you know, we thought, well, it's at least 95 percent right or 99 percent right. So think about it. The next five years, there were essentially something like five references to our work in "Nature" -- none. And so we were left by ourselves, and trying to do the last part of the trio: how do you -- what does this genetic information do? It was pretty obvious that it provided the information to an RNA molecule, and then how do you go from RNA to protein?For about three years we just -- I tried to solve the structure of RNA. It didn't yield. It didn't give good x-ray photographs. I was decidedly unhappy; a girl didn't marry me. It was really, you know, sort of a shitty time. 

12:03

So there's a picture of Francis and I before I met the girl, so I'm still looking happy. (Laughter) But there is what we did when we didn't know where to go forward: we formed a club and called it the RNA Tie Club. George Gamow, also a great physicist, he designed the tie. He was one of the members. The question was: How do you go from a four-letter code to the 20-letter code of proteins? Feynman was a member, and Teller, and friends of Gamow. But that's the only -- no, we were only photographed twice. And on both occasions, you know, one of us was missing the tie. There's Francis up on the upper right, and Alex Rich -- the M.D.-turned-crystallographer -- is next to me. This was taken in Cambridge in September of 1955. And I'm smiling, sort of forced, I think, because the girl I had, boy, she was gone.

13:10

And so I didn't really get happy until 1960, because then we found out, basically, you know, that there are three forms of RNA. And we knew, basically, DNA provides the information for RNA. RNA provides the information for protein. And that let Marshall Nirenberg, you know, take RNA -- synthetic RNA -- put it in a system making protein. He made polyphenylalanine, polyphenylalanine. So that's the first cracking of the genetic code, and it was all over by 1966. So there, that's what Chris wanted me to do, it was -- so what happened since then? Well, at that time -- I should go back.When we found the structure of DNA, I gave my first talk at Cold Spring Harbor. The physicist, Leo Szilard, he looked at me and said, "Are you going to patent this?" And -- but he knew patent law, and that we couldn't patent it, because you couldn't. No use for it. 

14:17

And so DNA didn't become a useful molecule, and the lawyers didn't enter into the equation until 1973, 20 years later, when Boyer and Cohen in San Francisco and Stanford came up with their method of recombinant DNA, and Stanford patented it and made a lot of money. At least they patented something which, you know, could do useful things. And then, they learned how to read the letters for the code. And, boom, we've, you know, had a biotech industry. And, but we were still a long ways from, you know, answering a question which sort of dominated my childhood, which is: How do you nature-nurture?

15:02

And so I'll go on. I'm already out of time, but this is Michael Wigler, a very, very clever mathematician turned physicist. And he developed a technique which essentially will let us look at sample DNA and, eventually, a million spots along it.There's a chip there, a conventional one. Then there's one made by a photolithography by a company in Madison called NimbleGen, which is way ahead of Affymetrix. And we use their technique. And what you can do is sort of compare DNA of normal segs versus cancer. And you can see on the top that cancers which are bad show insertions or deletions. So the DNA is really badly mucked up, whereas if you have a chance of surviving, the DNA isn't so mucked up. So we think that this will eventually lead to what we call "DNA biopsies." Before you get treated for cancer, you should really look at this technique, and get a feeling of the face of the enemy. It's not a -- it's only a partial look, but it's a -- I think it's going to be very, very useful.

16:10

So, we started with breast cancer because there's lots of money for it, no government money. And now I have a sort of vested interest: I want to do it for prostate cancer. So, you know, you aren't treated if it's not dangerous. But Wigler, besides looking at cancer cells, looked at normal cells, and made a really sort of surprising observation. Which is, all of us have about 10 places in our genome where we've lost a gene or gained another one. So we're sort of all imperfect. And the question is well, if we're around here, you know, these little losses or gains might not be too bad. But if these deletions or amplifications occurred in the wrong gene, maybe we'll feel sick.

16:57

So the first disease he looked at is autism. And the reason we looked at autism is we had the money to do it. Looking at an individual is about 3,000 dollars. And the parent of a child with Asperger's disease, the high-intelligence autism, had sent his thing to a conventional company; they didn't do it. Couldn't do it by conventional genetics, but just scanning itwe began to find genes for autism. And you can see here, there are a lot of them. So a lot of autistic kids are autisticbecause they just lost a big piece of DNA. I mean, big piece at the molecular level. We saw one autistic kid, about five million bases just missing from one of his chromosomes. We haven't yet looked at the parents, but the parents probablydon't have that loss, or they wouldn't be parents. Now, so, our autism study is just beginning. We got three million dollars. I think it will cost at least 10 to 20 before you'd be in a position to help parents who've had an autistic child, or think they may have an autistic child, and can we spot the difference? So this same technique should probably look at all. It's a wonderful way to find genes.

18:12

And so, I'll conclude by saying we've looked at 20 people with schizophrenia. And we thought we'd probably have to look at several hundred before we got the picture. But as you can see, there's seven out of 20 had a change which was very high. And yet, in the controls there were three. So what's the meaning of the controls? Were they crazy also, and we didn't know it? Or, you know, were they normal? I would guess they're normal. And what we think in schizophrenia is there are genes of predisposure, and whether this is one that predisposes -- and then there's only a sub-segment of the population that's capable of being schizophrenic.

18:56

Now, we don't have really any evidence of it, but I think, to give you a hypothesis, the best guess is that if you're left-handed, you're prone to schizophrenia. 30 percent of schizophrenic people are left-handed, and schizophrenia has a very funny genetics, which means 60 percent of the people are genetically left-handed, but only half of it showed. I don't have the time to say. Now, some people who think they're right-handed are genetically left-handed. OK. I'm just saying that, if you think, oh, I don't carry a left-handed gene so therefore my, you know, children won't be at risk of schizophrenia. You might. OK? 

19:43

So it's, to me, an extraordinarily exciting time. We ought to be able to find the gene for bipolar; there's a relationship.And if I had enough money, we'd find them all this year. I thank you.

相關焦點

  • 關於Xilinx FPGA如何獲取FPGA的Device DNA
    FPGA的DNA我們一般的使用場景是用於用戶邏輯加密。 如何獲取FPGA的Device DNA呢,下面我從JTAG和調用源語兩個方法說明,並開放核心代碼供大家參考。REGISTER下可以找到Device DNA,在Impact下如何獲取DNA網上有相應的文章,這裡就不做進一步介紹。
  • B肝病毒dna定量結果如何看 B肝是否會傳染
    那麼,B肝病毒dna定量結果如何看呢?B肝病毒會傳染嗎?應該怎麼預防B肝病毒呢?下面就跟小編一起來看看吧。B肝病毒dna定量結果如何看B肝病毒dna定量結果應該怎麼來看呢?其實HBV-DNA定性檢測在化驗單上是用「+」,「-」來表示的。
  • 誰是兇手,DNA在說話——法醫實驗室DNA鑑定的那些事兒
    我們看到通過dna檢測方法,可以立即鎖定犯罪嫌疑人,而收集犯罪嫌疑人的證據只需要一根棉籤。酚-氯仿法提取dna最能說明這一點,其通常用於提取血液裡的dna。往期文章如何安全的離心樣品fc5707微量離心機震撼上市如果您想了解更多關於奧豪斯冷凍離心機的信息,請聯繫我們
  • 通過轉錄組技術而測序的dna序列被稱為「dna受體」
    後面的dna受體可通過做dna晶片credit-sweep來獲得,後面的dna受體包括mirna,smallmrna,circrna和ae等。根據技術的不同,dna晶片可以分為三類:測mirna:測定mirna。測dna受體的全雙工轉錄信號的兩轉錄本等等。測vxrna:測vxrna。
  • 使用機器學習和Python揭開DNA測序神秘面紗
    儘管如此,科學家發現人類基因組的大部分彼此相似。作為數據驅動的科學,基因組學廣泛地利用機器學習來捕獲數據中的關係並推斷出新的生物學假設。但是,要想擁有從不斷增長的基因組學數據中提取新發現的能力,就需要更強大的機器學習模型。通過有效利用大型數據集,深度學習已給了計算機視覺和自然語言處理等領域帶來了很大進步。
  • | TED 2019「Bigger Than Us」專題報導
    Vescovo 說,「我們對海洋的偌大無知引人注目,從未有人到達四個海洋的最深處,事實上,我們甚至不能確切地知道,這四個海洋的最底處能到哪裡」。實際上,開潛艇潛水還有一條規則:你願意花 4 億人民幣去打造一艘潛艇。
  • TED 開放翻譯計劃為 TED.com 帶來40多種語言的視頻字幕翻譯
    這一業界首款工具將幫助全球志願者譯員把 TED 演講傳播到各群體 紐約2009年5月13日電 /美通社亞洲/ -- 現在,由 TED 網站免費提供的備受好評的18分鐘演講將通過 TED 開放翻譯計劃 (Open Translation Project) ( http://www.ted.com/translation
  • 《最強蝸牛》dna研究怎麼玩 dna研究玩法攻略
    最強蝸牛dna研究怎麼玩?dna的研究能讓你變醜或者變美,那麼我們要怎麼使用dna研究系統呢?接下來小編為大家帶來最強蝸牛dna研究玩法攻略,希望對大家有所幫助。 最強蝸牛dna研究怎麼玩
  • 從A4到A11,蘋果如何在IC設計上做硬體/軟體整合?
    ——Alan Kayf1tednc就在蘋果(Apple)即將於秋季發表會揭露下一代新款iPhone手機前夕,該公司率先寫下了市值突破1兆美元的歷史新頁。本文將著眼於Apple的策略布局,看看他們如何透過「現代」半導體技術實現如此的成就。f1tednc為此,我們首先需要看的就是iPhone。
  • 細菌DNA提取方法的優化
    在超聲過程中發現,以超聲3min破碎細菌提取的dna od260/od280最接近比值1.8,dna的純度較高,超聲波處理的時間不易過長,最佳破壁時間為3min。實驗結果如圖2、表2、表3所示: 由表2、3可知,水煮法得到的dna濃度比傳統法要高,主要因為水煮法步驟簡潔,減少了操作過程中對dna的損失及外源dna汙染機會。水煮法提取過程中不需要酚—氯仿抽提及乙醇沉澱,避免了對人體的危害,且所需費用低,但水煮法提取的dna純度較傳統法有小幅下降,主要是因為抽提過程簡單,dna溶液中含有蛋白質等雜質無法完全去除。
  • 《最強蝸牛》dna研究玩法介紹 dna研究玩法攻略分享
    最強蝸牛dna研究怎麼玩?dna的研究能讓你變醜或者變美,那麼我們要怎麼使用dna研究系統呢?接下來小編為大家帶來最強蝸牛dna研究玩法攻略,希望對大家有所幫助。 最強蝸牛dna研究玩法攻略 在右一屏的樓梯拐角處橫躺著一臺DNA進化模組,通過它能夠讓你變得更醜!變醜的同時也變得更強了!
  • 無創dna檢測的價格是多少?無創dna檢測應該怎麼做?
    無創dna檢測對於很多寶媽來說應該都很熟悉了,但是其中一個問題很是受寶媽們的關注,那就是其檢測的價格,那麼無創dna檢測的價格是多少?無創dna檢測應該怎麼做?下面裕力為大家講解一下這個備受寶媽們關注的問題。
  • dna親子鑑定原理和鑑定步驟
    如果檢測到某個dna位點的等位基因,一個與母親相同,另一個就應與父親相同,否則就存在疑問了。利用dna進行親子鑑定,只要作十幾至幾十個dna位點作檢測,如果全部一樣,就可以確定親子關係,如果有3個以上的位點不同,則可排除親子關係,有一兩個位點不同,則應考慮基因突變的可能,加做一些位點的檢測進行辨別。
  • 科學家建立一種新型的元DNA結構,開闢光電子以及合成生物學
    眾所周知,沃森-克裡克鹼基配對的可預見性以及dna的結構特徵,使得dna可以作為一種通用的構件,來設計複雜的納米結構和設備。「DNA技術的一個裡程碑當然是dna摺紙的發明,其中一個長單鏈dna(Ssdna)在數百條短dna短纖鏈的幫助下被摺疊成指定的形狀,」嚴解釋道。
  • 研究發現生物鐘因子通過改變DNA修復來促進腫瘤的進展
    「當我們進一步研究CRY 1的作用時,我們意外地發現,晝夜節律因素正在改變癌細胞修復DNA的方式。」 癌症治療的目的是破壞癌細胞的DNA,導致修復機制上的缺陷;當損傷嚴重時,細胞最終自毀。研究人員探討了哭-1在培養細胞、動物模型和前列腺癌患者組織中DNA修復中的可能作用。
  • 做無創dna需要空腹嗎多久出結果,雙胞胎做無創dna準嗎
    核心提示:做無創dna需要空腹嗎多久出結果,雙胞胎做無創dna準嗎?許多女性不能理解,普通隱私親子鑑定只需要2000元就可以做兩個人,而無創產前親子鑑定費用為什麼這麼高?產前鑑定的技術同樣檢測的是兩個人的dna   做無創dna需要空腹嗎多久出結果,雙胞胎做無創dna準嗎?許多女性不能理解,普通隱私親子鑑定只需要2000元就可以做兩個人,而無創產前親子鑑定費用為什麼這麼高?
  • 什麼是B肝病毒dna 它是怎麼檢查的
    B肝這種疾病大家都很熟悉,我們在生活中也經常聽說這種疾病。但是B肝病毒dna大家都不怎麼了解。那麼,什麼是B肝病毒dna呢?B肝病毒dna檢查是怎樣的呢?檢查需要空腹嗎?下面就跟小編一起來看看吧。什麼是B肝病毒dnaB肝病毒dna是判斷B肝病毒有沒有複製的指標,主要是來判斷人的身體內B肝病毒的多少和傳染的程度。
  • dna親子鑑定要多少錢?dna親子鑑定價格大全
    那麼dna親子鑑定要多少錢? 網上有很多非正規的親子鑑定中心,關於親子鑑定價格也是五花八門。那麼dna親子鑑定需要多少錢?  dna親子鑑定需要多少錢?  做dan親子鑑定可以是個人隱私親子鑑定、也可以是**親子鑑定,當然也能是胎兒親子鑑定。
  • B肝dna定量參考值是多少 預防B肝的方法
    在生活中,有很多人都有B肝的病症,那麼我們應該如何預防B肝呢。B肝dna定量參考值是多少?B肝病毒DNA陽性意味著什麼?如果患上B肝,我們則需要積極的治療,B肝治療過程中需要注意什麼?下面就讓小編為大家介紹一下吧。B肝dna定量參考值是多少1)定性。即確定是陰性仍是陽性。即B肝病毒DNA<1x10的3次方仿製 ml="" 。
  • 關於B肝病毒dna定量結果的查看,不說你還不一定知道
    其實,B肝病毒離我們很接近,在檢查身體的時候,會接觸到B肝病毒DNA定量這一項檢查。但是,很多人因為不了解,因此看不懂檢查的數據。那麼,B肝病毒dna定量結果要如何看呢?B肝病毒會傳染嗎?如何看B肝病毒dna定量結果?B肝病毒的dna定量結果是很多人都不明確的,一般在化驗單上面可以看到「+」,「-」兩種符號。「+」是代表陽性,「-」是代表陰性。