圓周率(Pai)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學裡,π可以嚴格地定義為滿足sin x = 0的最小正實數x。
圓周率用字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。
在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。
圓周率,一般以π來表示,是一個在數學及物理學普遍存在的數學常數。它定義為圓形之周長與直徑之比值。它
圓周率你知道多少?看了以後才知道自己還是太年輕了
圓周率π也等於圓形之面積與半徑平方之比值。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學上,π可以嚴格地定義為滿足sin(x) = 0的最小正實數x。2011年6月部分學者認為圓周率定義不合理,要求改為6.28。
π是第十六個希臘字母,本來它是和圓周率沒有關係的,但大數學家歐拉從一七三六年開始,在書信和論文中都用π來表示圓周率。因為他是大數學家,所以人們也有樣學樣地用π來表示圓周率了。但π除了表示圓周率外,也可以用來表示其他事物,在統計學中也能看到它的出現。π=Pai(π=Pi)古希臘歐幾裡德《幾何原本》(約公元前3世紀初)中提到圓周率是常數,中國古算書《周髀算經》( 約公元前2世紀)中有「徑一而周三」的記載,也認為圓周率是常數[1]。
歷史上曾採用過圓周率的多種近似值,早期大都是通過實驗而得到的結果,如古埃及紙草書(約公元前1700)中取pi=(4/3)^4≒3.1604 。第一個用科學方法尋求圓周率數值的人是阿基米德,他在《圓的度量》(公元前3世紀)中用圓內接和外切正多邊形的周長確定圓周長的上下界,從正六邊形開始,逐次加倍計算到正96邊形,得到(3+(10/71))<π<(3+(1/7)) ,開創了圓周率計算的幾何方法(亦稱古典方法,或阿基米德方法),得出精確到小數點後兩位的π值。
中國數學家劉徽在注釋《九章算術》(263年)時只用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術。他用割圓術一直算到圓內接正192邊形,得出π≈根號10(約為3.14)。
古希臘作為古代幾何王國對圓周率的貢獻尤為突出。古希臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。阿基米德從單位圓出發,先用內接正六邊形求出圓周率的下界為3,再用外接正六邊形並藉助勾股定理求出圓周率的上界小於4。接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再藉助勾股定理改進圓周率的下界和上界。他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。最後,他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。阿基米德用到了迭代算法和兩側數值逼近的概念,稱得上是「計算數學」的鼻祖。
南北朝時代著名數學家祖衝之進一步得出精確到小數點後7位的π值(約5世紀下半葉),給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率355/113和約率22/7。他的輝煌成就比歐洲至少早了1000年。其中的密率在西方直到1573才由德國人奧託得到,1625年發表於荷蘭工程師安託尼斯的著作中,歐洲不知道是祖衝之先知道密率的,將密率錯誤的稱之為安託尼斯率。
阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖衝之保持近千年的紀錄。
德國數學家柯倫於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。
無窮乘積式、無窮連分數、無窮級數等各種π值表達式紛紛出現,π值計算精度也迅速增加。1706年英國數學家梅欽計算π值突破100位小數大關。1873 年另一位英國數學家尚可斯將π值計算到小數點後707位,可惜他的結果從528位起是錯的。到1948年英國的弗格森和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。
相關教學電子計算機的出現使π值計算有了突飛猛進的發展。1949年美國馬裡蘭州阿伯丁的軍隊彈道研究實驗室首次用計算機(ENIAC)計算π值,一下子就算到2037位小數,突破了千位數。1989年美國哥倫比亞大學研究人員用克雷-2型和IBM-VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數,創下最新的紀錄。2010年1月7日——法國一工程師將圓周率算到小數點後27000億位。2010年8月30日——日本計算機奇才近藤茂利用家用計算機和雲計算相結合,計算出圓周率到小數點後5萬億位。
2011年10月16日,日本長野縣飯田市公司職員近藤茂利用家中電腦將圓周率計算到小數點後10萬億位,刷新了2010年8月由他自己創下的5萬億位金氏世界紀錄。今年56歲近藤茂使用的是自己組裝的計算機,從去年10月起開始計算,花費約一年時間刷新了紀錄。
在歷史上,有不少數學家都對圓周率作出過研究,當中著名的有阿基米德(Archimedes ofSyracuse)、託勒密(Claudius Ptolemy)、張衡、祖衝之等。他們在自己的國家用各自的方法,辛辛苦苦地去計算圓周率的值。下面,就是世上各個地方對圓周率的研究成果。
中國,最初在《周髀算經》中就有「徑一周三」的記載,取π值為3。
魏晉時,劉徽曾用使正多邊形的邊數逐漸增加去逼近圓周的方法(即「割圓術」),求得π的近似值3.1416。
漢朝時,張衡得出π的平方除以16等於5/8,即π等於10的開方(約為3.162)。雖然這個值不太準確,但它簡單易理解,所以也在亞洲風行了一陣。 王蕃(229-267)發現了另一個圓周率值,這就是3.156,但沒有人知道他是如何求出來的。
公元5世紀,祖衝之和他的兒子以正24576邊形,求出圓周率約為355/113,和真正的值相比,誤差小於八億分之一。這個紀錄在一千年後才給打破。
印度,約在公元530年,數學大師阿耶波多利用384邊形的周長,算出圓周率約為√9.8684。
婆羅門笈多採用另一套方法,推論出圓周率等於10的算術平方根。
斐波那契算出圓周率約為3.1418。
韋達用阿基米德的方法,算出3.1415926535<π<3.1415926537
他還是第一個以無限乘積敘述圓周率的人。
(阿基米德,前287-212,古希臘數學家,從單位圓出發,先用內接六邊形求出圓周率的下界是3,再用外接六邊形結合勾股定理求出圓周率的上限為4,接著對內接和外界正多邊形的邊數加倍,分別變成了12邊型,直到內接和外接96邊型為止。最後他求出上界和下界分別為22╱7和223╱71,並取他們的平均值3.141851為近似值,用到了迭代算法和兩數逼近的概念,稱得算是計算的鼻祖。
魯道夫萬科倫以邊數多過32000000000的多邊形算出有35個小數位的圓周率。
華理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
歐拉發現的e的iπ次方加1等於0,成為證明π是超越數的重要依據。
之後,不斷有人給出反正切公式或無窮級數來計算π,在這裡就不多說了。
圓周率你知道多少?看了以後才知道自己還是太年輕了
演示在1949年,美國製造的世上首部電腦-ENIAC(Electronic Numerical Interator and Computer)在亞伯丁試驗場啟用了。次年,裡特韋斯納、馮紐曼和梅卓普利斯利用這部電腦,計算出π的2037個小數位。這部電腦只用了70小時就完成了這項工作,扣除插入打孔卡所花的時間,等於平均兩分鐘算出一位數。五年後,NORC(海軍兵器研究計算機)只用了13分鐘,就算出π的3089個小數位。科技不斷進步,電腦的運算速度也越來越快,在60年代至70年代,隨著美、英、法的電腦科學家不斷地進行電腦上的競爭,π的值也越來越精確。在1973年,Jean Guilloud和M. Bouyer發現了π的第一百萬個小數位。
在1976年,新的突破出現了。薩拉明(Eugene Salamin)發表了一條新的公式,那是一條二次收斂算則,也就是說每經過一次計算,有效數字就會倍增。高斯以前也發現了一條類似的公式,但十分複雜,在那沒有電腦的時代是不可行的。之後,不斷有人以高速電腦結合類似薩拉明的算則來計算π的值。目前為止,π的值己被算至小數點後60000000000001位(IBM藍色基因)。
為什麼要繼續計算π
其實,即使是要求最高、最準確的計算,也用不著這麼多的小數位,那麼,為什麼人們還要不斷地努力去計算圓周率呢?
第一,用這個方法就可以測試出電腦的毛病。如果在計算中得出的數值出了錯,這就表示硬體有毛病或軟體出了錯,這樣便需要進行更改。同時,以電腦計算圓周率也能使人們產生良性的競爭,科技也能得到進步,從而改善人類的生活。就連微積分、高等三角恆等式,也是由研究圓周率的推動,從而發展出來的。
第二,數學家把π算的那麼長,是想研究π的小數是否有規律。
比如,π值從第70.01萬位小數起,連續出現7個3,即3333333,從第320.4765萬位開始,又連續出現7個3。
現在大家就會問,π只具備這樣一種特殊性質嗎!?