1)Linux的初始內核映象以gzip壓縮文件的格式存放在zImage或bzImage之中,內核的自舉代碼將它解壓到1M內存開始處.在內核初始化時,如果加載了壓縮的initrd映象,內核會將它解壓到內存檔中,這兩處解壓過程都使用了lib/inflate.c文件.
2)inflate.c是從gzip源程序中分離出來的,包含了一些對全局數據的直接引用,在使用時需要直接嵌入到代碼中.gzip壓縮文件時總是在前32K字節的範圍內尋找重複的字符串進行編碼,在解壓時需要一個至少為32K字節的解壓緩衝區,它定義為window[WSIZE].inflate.c使用get_byte()讀取輸入文件,它被定義成宏來提高效率.輸入緩衝區指針必須定義為inptr, inflate.c中對之有減量操作.inflate.c調用flush_window()來輸出window緩衝區中的解壓出的字節串,每次輸出長度用outcnt變量表示.在flush_window()中,還必須對輸出字節串計算CRC並且刷新crc變量.在調用gunzip()開始解壓之前,調用makecrc()初始化CRC計算表.最後gunzip()返回0表示解壓成功.
3)zImage或bzImage由16位引導代碼和32位內核自解壓映象兩個部分組成.對於zImage,內核自解壓映象被加載到物理地址0x1000,內核被解壓到1M的部位.對於bzImage,內核自解壓映象被加載到1M開始的地方,內核被解壓為兩個片段,一個起始於物理地址0x2000-0x90000,另一個起始於高端解壓映象之後,離1M開始處不小於低端片段最大長度的區域.解壓完成後,這兩個片段被合併到1M的起始位置.
解壓根內存檔映象文件的代碼-
; drivers/block/rd.c
#ifdef BUILD_CRAMDISK
/*
* gzip declarations
*/
#define OF(args) args ; 用於函數原型聲明的宏
#ifndef memzero
#define memzero(s, n) memset ((s), 0, (n))
#endif
typedef unsigned char uch;定義inflate.c所使用的3種數據類型
typedef unsigned short ush;
typedef unsigned long ulg;
#define INBUFSIZ 4096用戶輸入緩衝區尺寸
#define WSIZE 0x8000 /* window size--must be a power of two, and */
/* at least 32K for zip's deflate method */
static uch *inbuf;用戶輸入緩衝區,與inflate.c無關
static uch *window;解壓窗口
static unsigned insize; /* valid bytes in inbuf */
static unsigned inptr; /* index of next byte to be processed in inbuf */
static unsigned outcnt; /* bytes in output buffer */
static int exit_code;
static long bytes_out;總解壓輸出長度,與inflate.c無關
static struct file *crd_infp, *crd_outfp;
#define get_byte() (inptr
/* Diagnostic functions (stubbed out) */一些調試宏
#define Assert(cond,msg)
#define Trace(x)
#define Tracev(x)
#define Tracevv(x)
#define Tracec(c,x)
#define Tracecv(c,x)
#define STATIC static
static int fill_inbuf(void);
static void flush_window(void);
static void *malloc(int size);
static void free(void *where);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);
#include "../../lib/inflate.c"
static void __init *malloc(int size)
{
return kmalloc(size, GFP_KERNEL);
}
static void __init free(void *where)
{
kfree(where);
}
static void __init gzip_mark(void **ptr)
{
;讀取用戶一個標記
}
static void __init gzip_release(void **ptr)
{
;歸還用戶標記
}
/* ===========================================================================
* Fill the input buffer. This is called only when the buffer is empty
* and at least one byte is really needed.
*/
static int __init fill_inbuf(void)填充輸入緩衝區
{
if (exit_code) return -1;
insize = crd_infp->f_op->read(crd_infp, inbuf, INBUFSIZ,
if (insize == 0) return -1;
inptr = 1;
return inbuf[0];
}
/* ===========================================================================
* Write the output window window[0..outcnt-1] and update crc and bytes_out.
* (Used for the decompressed data only.)
*/
static void __init flush_window(void)輸出window緩衝區中outcnt個字節串
{
ulg c = crc; /* temporary variable */
unsigned n;
uch *in, ch;
crd_outfp->f_op->write(crd_outfp, window, outcnt,
in = window;
for (n = 0; n ch = *in++;
c = crc_32_tab[((int)c ^ ch) 0xff] ^ (c >> 8);計算輸出串的CRC
}
crc = c;
bytes_out += (ulg)outcnt;刷新總字節數
outcnt = 0;
}
static void __init error(char *x)解壓出錯調用的函數
{
printk(KERN_ERR "%s", x);
exit_code = 1;
}
static int __init
crd_load(struct file * fp, struct file *outfp)
{
int result;
insize = 0; /* valid bytes in inbuf */
inptr = 0; /* index of next byte to be processed in inbuf */
outcnt = 0; /* bytes in output buffer */
exit_code = 0;
bytes_out = 0;
crc = (ulg)0xffffffffL; /* shift register contents */
crd_infp = fp;
crd_outfp = outfp;
inbuf = kmalloc(INBUFSIZ, GFP_KERNEL);
if (inbuf == 0) {
printk(KERN_ERR "RAMDISK: Couldn't allocate gzip buffer\n");
return -1;
}
window = kmalloc(WSIZE, GFP_KERNEL);
if (window == 0) {
printk(KERN_ERR "RAMDISK: Couldn't allocate gzip window\n");
kfree(inbuf);
return -1;
}
makecrc();
result = gunzip();
kfree(inbuf);
kfree(window);
return result;
}
#endif /* BUILD_CRAMDISK */
32位內核自解壓代碼
---
; arch/i386/boot/compressed/head.S
.text
#include ·
#include
.globl startup_32對於zImage該入口地址為0x1000;對於bzImage為0x101000
startup_32:
cld
cli
movl $(__KERNEL_DS),%eax
movl %eax,%ds
movl %eax,%es
movl %eax,%fs
movl %eax,%gs
lss SYMBOL_NAME(stack_start),%esp # 自解壓代碼的堆棧為misc.c中定義的16K字節的數組
xorl %eax,%eax
1: incl %eax # check that A20 really IS enabled
movl %eax,0x000000 # loop forever if it isn't
cmpl %eax,0x100000
je 1b
/*
* Initialize eflags. Some BIOS's leave bits like NT set. This would
* confuse the debugger if this code is traced.
* XXX - best to initialize before switching to protected mode.
*/
pushl $0
popfl
/*
* Clear BSS清除解壓程序的BSS段
*/
xorl %eax,%eax
movl $ SYMBOL_NAME(_edata),%edi
movl $ SYMBOL_NAME(_end),%ecx
subl %edi,%ecx
cld
rep
stosb
/*
* Do the decompression, and jump to the new kernel..
*/
subl $16,%esp # place for structure on the stack
movl %esp,%eax
pushl %esi # real mode pointer as second arg
pushl %eax # address of structure as first arg
call SYMBOL_NAME(decompress_kernel)
orl %eax,%eax # 如果返回非零,則表示為內核解壓為低端和高端的兩個片斷
jnz 3f
popl %esi # discard address
popl %esi # real mode pointer
xorl %ebx,%ebx
ljmp $(__KERNEL_CS), $0x100000 # 運行start_kernel
/*
* We come here, if we were loaded high.
* We need to move the move-in-place routine down to 0x1000
* and then start it with the buffer addresses in registers,
* which we got from the stack.
*/
3:
movl $move_routine_start,%esi
movl $0x1000,%edi
movl $move_routine_end,%ecx
subl %esi,%ecx
addl $3,%ecx
shrl $2,%ecx # 按字取整
cld
rep
movsl # 將內核片斷合併代碼複製到0x1000區域,內核的片段起始為0x2000
popl %esi # discard the address
popl %ebx # real mode pointer
popl %esi # low_buffer_start內核低端片段的起始地址
popl %ecx # lcount內核低端片段的字節數量
popl %edx # high_buffer_start內核高端片段的起始地址
popl %eax # hcount內核高端片段的字節數量
movl $0x100000,%edi內核合併的起始地址
cli # make sure we don't get interrupted
ljmp $(__KERNEL_CS), $0x1000 # and jump to the move routine
/*
* Routine (template) for moving the decompressed kernel in place,
* if we were high loaded. This _must_ PIC-code !
*/
move_routine_start:
movl %ecx,%ebp
shrl $2,%ecx
rep
movsl # 按字拷貝第1個片段
movl %ebp,%ecx
andl $3,%ecx
rep
movsb # 傳送不完全字
movl %edx,%esi
movl %eax,%ecx # NOTE: rep movsb won't move if %ecx == 0
addl $3,%ecx
shrl $2,%ecx # 按字對齊
rep
movsl # 按字拷貝第2個片段
movl %ebx,%esi # Restore setup pointer
xorl %ebx,%ebx
ljmp $(__KERNEL_CS), $0x100000 # 運行start_kernel
move_routine_end:
; arch/i386/boot/compressed/misc.c
/*
* gzip declarations
*/
#define OF(args) args
#define STATIC static
#undef memset
#undef memcpy
#define memzero(s, n) memset ((s), 0, (n))
ypedef unsigned char uch;
typedef unsigned short ush;
typedef unsigned long ulg;
#define WSIZE 0x8000 /* Window size must be at least 32k, */
/* and a power of two */
static uch *inbuf; /* input buffer */
static uch window[WSIZE]; /* Sliding window buffer */
static unsigned insize = 0; /* valid bytes in inbuf */
static unsigned inptr = 0; /* index of next byte to be processed in inbuf */
static unsigned outcnt = 0; /* bytes in output buffer */
/* gzip flag byte */
#define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
#define COMMENT 0x10 /* bit 4 set: file comment present */
#define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
#define RESERVED 0xC0 /* bit 6,7: reserved */
#define get_byte() (inptr
/* Diagnostic functions */
#ifdef DEBUG
# define Assert(cond,msg) {if(!(cond)) error(msg);}
# define Trace(x) fprintf x
# define Tracev(x) {if (verbose) fprintf x ;}
# define Tracevv(x) {if (verbose>1) fprintf x ;}
# define Tracec(c,x) {if (verbose (c)) fprintf x ;}
# define Tracecv(c,x) {if (verbose>1 (c)) fprintf x ;}
#else
# define Assert(cond,msg)
# define Trace(x)
# define Tracev(x)
# define Tracevv(x)
# define Tracec(c,x)
# define Tracecv(c,x)
#endif
static int fill_inbuf(void);
static void flush_window(void);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);
/*
* This is set up by the setup-routine at boot-time
*/
static unsigned char *real_mode; /* Pointer to real-mode data */
#define EXT_MEM_K (*(unsigned short *)(real_mode + 0x2))
#ifndef STANDARD_MEMORY_BIOS_CALL
#define ALT_MEM_K (*(unsigned long *)(real_mode + 0x1e0))
#endif
#define SCREEN_INFO (*(struct screen_info *)(real_mode+0))
extern char input_data[];
extern int input_len;
static long bytes_out = 0;
static uch *output_data;
static unsigned long output_ptr = 0;
static void *malloc(int size);
static void free(void *where);
static void error(char *m);
static void gzip_mark(void **);
static void gzip_release(void **);
static void puts(const char *);
extern int end;
static long free_mem_ptr = (long)
static long free_mem_end_ptr;
#define INPLACE_MOVE_ROUTINE 0x1000內核片段合併代碼的運行地址
#define LOW_BUFFER_START 0x2000內核低端解壓片段的起始地址
#define LOW_BUFFER_MAX 0x90000內核低端解壓片段的終止地址
#define HEAP_SIZE 0x3000為解壓低碼保留的堆的尺寸,堆起始於BSS的結束
static unsigned int low_buffer_end, low_buffer_size;
static int high_loaded =0;
static uch *high_buffer_start /* = (uch *)(((ulg) + HEAP_SIZE)*/;
static char *vidmem = (char *)0xb8000;
static int vidport;
static int lines, cols;
#include "../../../../lib/inflate.c"
static void *malloc(int size)
{
void *p;
if (size if (free_mem_ptr
free_mem_ptr = (free_mem_ptr + 3) ~3; /* Align */
p = (void *)free_mem_ptr;
free_mem_ptr += size;
if (free_mem_ptr >= free_mem_end_ptr)
error("\nOut of memory\n");
return p;
}
static void free(void *where)
{ /* Don't care */
}
static void gzip_mark(void **ptr)
{
*ptr = (void *) free_mem_ptr;
}
static void gzip_release(void **ptr)
{
free_mem_ptr = (long) *ptr;
}
static void scroll(void)
{
int i;
memcpy ( vidmem, vidmem + cols * 2, ( lines - 1 ) * cols * 2 );
for ( i = ( lines - 1 ) * cols * 2; i vidmem[ i ] = ' ';
}
static void puts(const char *s)
{
int x,y,pos;
char c;
x = SCREEN_INFO.orig_x;
y = SCREEN_INFO.orig_y;
while ( ( c = *s++ ) != '\0' ) {
if ( c == '\n' ) {
x = 0;
if ( ++y >= lines ) {
scroll();
y--;
}
} else {
vidmem [ ( x + cols * y ) * 2 ] = c;
if ( ++x >= cols ) {
x = 0;
if ( ++y >= lines ) {
scroll();
y--;
}
}
}
}
SCREEN_INFO.orig_x = x;
SCREEN_INFO.orig_y = y;
pos = (x + cols * y) * 2; /* Update cursor position */
outb_p(14, vidport);
outb_p(0xff (pos >> 9), vidport+1);
outb_p(15, vidport);
outb_p(0xff (pos >> 1), vidport+1);
}
void* memset(void* s, int c, size_t n)
{
int i;
char *ss = (char*)s;
for (i=0;i return s;
}
void* memcpy(void* __dest, __const void* __src,
size_t __n)
{
int i;
char *d = (char *)__dest, *s = (char *)__src;
for (i=0;i return __dest;
}
/* ===========================================================================
* Fill the input buffer. This is called only when the buffer is empty
* and at least one byte is really needed.
*/
static int fill_inbuf(void)
{
if (insize != 0) {
error("ran out of input data\n");
}
inbuf = input_data;
insize = input_len;
inptr = 1;
return inbuf[0];
}
/* ===========================================================================
* Write the output window window[0..outcnt-1] and update crc and bytes_out.
* (Used for the decompressed data only.)
*/
static void flush_window_low(void)
{
ulg c = crc; /* temporary variable */
unsigned n;
uch *in, *out, ch;
in = window;
out =
for (n = 0; n ch = *out++ = *in++;
c = crc_32_tab[((int)c ^ ch) 0xff] ^ (c >> 8);
}
crc = c;
bytes_out += (ulg)outcnt;
output_ptr += (ulg)outcnt;
outcnt = 0;
}
static void flush_window_high(void)
{
ulg c = crc; /* temporary variable */
unsigned n;
uch *in, ch;
in = window;
for (n = 0; n ch = *output_data++ = *in++;
if ((ulg)output_data == low_buffer_end) output_data=high_buffer_start;
c = crc_32_tab[((int)c ^ ch) 0xff] ^ (c >> 8);
}
crc = c;
bytes_out += (ulg)outcnt;
outcnt = 0;
}
static void flush_window(void)
{
if (high_loaded) flush_window_high();
else flush_window_low();
}
static void error(char *x)
{
puts("\n\n");
puts(x);
puts("\n\n -- System halted");
while(1); /* Halt */
}
#define STACK_SIZE (4096)
long user_stack [STACK_SIZE];
struct {
long * a;
short b;
} stack_start = { user_stack [STACK_SIZE] , __KERNEL_DS };
void setup_normal_output_buffer(void)對於zImage,直接解壓到1M
{
#ifdef STANDARD_MEMORY_BIOS_CALL
if (EXT_MEM_K #else
if ((ALT_MEM_K > EXT_MEM_K ? ALT_MEM_K : EXT_MEM_K) #endif
output_data = (char *)0x100000; /* Points to 1M */
free_mem_end_ptr = (long)real_mode;
}
struct moveparams {
uch *low_buffer_start; int lcount;
uch *high_buffer_start; int hcount;
};
void setup_output_buffer_if_we_run_high(struct moveparams *mv)
{
high_buffer_start = (uch *)(((ulg) + HEAP_SIZE);內核高端片段的最小起始地址
#ifdef STANDARD_MEMORY_BIOS_CALL
if (EXT_MEM_K #else
if ((ALT_MEM_K > EXT_MEM_K ? ALT_MEM_K : EXT_MEM_K) #endif
mv->low_buffer_start = output_data = (char *)LOW_BUFFER_START;
low_buffer_end = ((unsigned int)real_mode > LOW_BUFFER_MAX
? LOW_BUFFER_MAX : (unsigned int)real_mode) ~0xfff;
low_buffer_size = low_buffer_end - LOW_BUFFER_START;
high_loaded = 1;
free_mem_end_ptr = (long)high_buffer_start;
if ( (0x100000 + low_buffer_size) > ((ulg)high_buffer_start)) {
;如果高端片段的最小起始地址小於它實際應加載的地址,則將它置為實際地址,
;這樣高端片段就無需再次移動了,否則它要向前移動
high_buffer_start = (uch *)(0x100000 + low_buffer_size);
mv->hcount = 0; /* say: we need not to move high_buffer */
}
else mv->hcount = -1;待定
mv->high_buffer_start = high_buffer_start;
}
void close_output_buffer_if_we_run_high(struct moveparams *mv)
{
if (bytes_out > low_buffer_size) {
mv->lcount = low_buffer_size;
if (mv->hcount)
mv->hcount = bytes_out - low_buffer_size;求出高端片段的字節數
} else { 如果解壓後內核只有低端的一個片段
mv->lcount = bytes_out;
mv->hcount = 0;
}
}
int decompress_kernel(struct moveparams *mv, void *rmode)
{
real_mode = rmode;
if (SCREEN_INFO.orig_video_mode == 7) {
vidmem = (char *) 0xb0000;
vidport = 0x3b4;
} else {
vidmem = (char *) 0xb8000;
vidport = 0x3d4;
}
lines = SCREEN_INFO.orig_video_lines;
cols = SCREEN_INFO.orig_video_cols;
if (free_mem_ptr else setup_output_buffer_if_we_run_high(mv);
makecrc();
puts("Uncompressing Linux... ");
gunzip();
puts("Ok, booting the kernel.\n");
if (high_loaded) close_output_buffer_if_we_run_high(mv);
return high_loaded;
}