每天一分鐘,帶你讀遍機器人頂級會議文章
標題:Multimodal tracking framework for visual odometry in challenging illumination conditions
作者:Axel Beauvisage, Kenan Ahiska, Nabil Aouf
來源:2020 IEEE International Conference on Robotics and Automation (ICRA)
編譯:餘旭東
審核:柴毅,王靖淇
這是泡泡一分鐘推送的第 631 篇文章,歡迎個人轉發朋友圈;其他機構或自媒體如需轉載,後臺留言申請授權
視覺裡程計和定位的研究大多是在可見光條件下求解的,其中光照是一個關鍵因素。電磁波譜的其他部分正被研究,以在極端光照條件下求解。特別地,多譜段的設置是令人感興趣的,因為它們能同時提供不同譜段的信息。但是,這種相機設置的主要挑戰在於生成的圖像之間缺少相似性,導致傳統的立體匹配技術顯得過時。
這項工作研究一種應用於視覺裡程計的同時處理不同波譜的圖像的新方法。尤其關注的是可見光和長波紅外(LWIR)波譜,它們的像素強度之間的不同之處是最多的。我們提出了一種新的多模態單目視覺裡程計(MMS-VO),同時提取特徵,但是只有提供跟蹤質量最好的相機被用於估計運動。視覺裡程計通過加窗的光束調整框架實現,當場景本質發生變化時選擇不同的相機。而且,根據視差選擇適當的關鍵幀使得運動估計過程是抗差的。
算法在一系列可見光-紅外數據集上測試,數據集來自真實場景中駕駛的汽車。結果表明,特徵提取能夠採用同一組參數在不同模態中實現。此外,多模態單目視覺裡程計能提供較好的視覺裡程計軌跡,因為當某個相機不能工作時另一個可以補償。
表1 每次迭代進行野值剔除之後可見光、紅外光以及被選擇模態的剩餘點的數量
表3 MMS-VO和真值(GNSS)之間的誤差比較
圖3 序列3中的軌跡,a是可見光VO和紅外VO單獨的軌跡估計,b是進行模態選擇之後的軌跡估計
圖4 p-LK失效的例子以及對應的p-LK跟蹤結果,每個藍線表示當前幀和上一幀中特徵點的位置
Abstract
Research on visual odometry and localisation is largely dominated by solutions developed in the visible spectrum, where illumination is a critical factor. Other parts of the electromagnetic spectrum are currently being investigated to generate solutions dealing with extreme illumination conditions. Multispectral setups are particularly interesting as they provide information from different parts of the spectrum at once. However, the main challenge of such camera setups is the lack of similarity between the images produced, which makes conventional stereo matching techniques obsolete.
This work investigates a new way of concurrently processing images from different spectra for application to visual odometry. It particularly focuses on the visible and Long Wave InfraRed (LWIR) spectral bands where dissimilarity between pixel intensities is maximal. A new Multimodal Monocular Visual Odometry solution (MMS-VO) is presented. With this novel approach, features are tracked simultaneously, but only the camera providing the best tracking quality is used to estimate motion. Visual odometry is performed within a windowed bundle adjustment framework, by alternating between the cameras as the nature of the scene changes. Furthermore, the motion estimation process is robustifified by selecting adequate keyframes based on parallax.
The algorithm was tested on a series of visible-thermal datasets, acquired from a car with real driving conditions. It is shown that feature tracking could be performed in both modalities with the same set of parameters. Additionally, the MMS-VO provides a superior visual odometry trajectory as one camera can compensate when the other is not working.
如果你對本文感興趣,請點擊點擊閱讀原文下載完整文章,如想查看更多文章請關注【泡泡機器人SLAM】公眾號(paopaorobot_slam)。
百度網盤提取碼:0o84
歡迎來到泡泡論壇,這裡有大牛為你解答關於SLAM的任何疑惑。
有想問的問題,或者想刷帖回答問題,泡泡論壇歡迎你!
泡泡網站:www.paopaorobot.org
泡泡論壇:http://paopaorobot.org/bbs/
泡泡機器人SLAM的原創內容均由泡泡機器人的成員花費大量心血製作而成,希望大家珍惜我們的勞動成果,轉載請務必註明出自【泡泡機器人SLAM】微信公眾號,否則侵權必究!同時,我們也歡迎各位轉載到自己的朋友圈,讓更多的人能進入到SLAM這個領域中,讓我們共同為推進中國的SLAM事業而努力!
商業合作及轉載請聯繫liufuqiang_robot@hotmail.com