PRL導讀-2019年122卷16期

2021-01-14 京師物理

超導的腔量子Eliashberg增強

Driving a conventional superconductor with an appropriately tunedclassical electromagnetic field can lead to an enhancement of superconductivity via a redistribution of the quasiparticles into a more favorable nonequilibrium distribution—a phenomenon known as the Eliashberg effect. Here, we theoretically consider coupling a two-dimensional superconducting film to the quantized electromagnetic modes of a microwave resonator cavity. As in the classical Eliashberg case, we use a kinetic equation to study the effect of the fluctuating, dynamical electromagnetic field on the Bogoliubov quasiparticles. We find that when the photon and quasiparticle systems are out of thermal equilibrium, a redistribution of quasiparticles into a more favorable nonequilibrium steady state occurs, thereby enhancing superconductivity in the sample. We predict that by tailoring the cavity environment (e. g., the photon occupation and spectral functions), enhancement can be observed in a variety of parameter regimes, offering a large degree of tunability.

Cavity Quantum Eliashberg Enhancement of Superconductivity

Jonathan B. Curtis et al.

Phys. Rev. Lett. 122, 167002 (2019)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.167002

相關焦點

  • PRL導讀-2019年122卷10期
    Lett. 122, 103601 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.103601
  • PRL導讀-2019年122卷25期
    Lett. 122, 257203 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.257203
  • PRL導讀-2019年122卷23期
    Lett. 122, 233904 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.233904
  • PRL導讀-2019年122卷08期
    Lett. 122, 088104 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.088104
  • PRL導讀-2019年122卷22期
    Lett. 122, 226402 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.226402
  • PRL導讀-2019年122卷15期
    Lett. 122, 150602 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.150602
  • PRL導讀:2019年122卷08期
    Lett. 122, 080502 (2019)   https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.080502     通過多通道驅動測量量子比特
  • PRL導讀-2018年120卷13期編輯推薦文章
    Lett. 120, 138301 (2018)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.138301其他相關導讀PRL導讀-2018年120卷12期PRL導讀-2018年120卷11期PRL導讀-2018年120卷10期PRL
  • PRL導讀:2019年122卷09期
    Lett. 122, 090601 (2019)     引力與天體物理   導讀:郭敏勇;責編:高思傑   超新星中微子快速味轉換的碰撞觸發   在中微子層附近可能發生的超新星中微子的快速味轉換
  • PRL導讀:2019年122卷07期
    Lett. 122, 075502 (2019)       熱電材料SnSe中的聲子坍塌和二階相變   自2014年以來,高溫Cmcm相的層狀半導體SnSe是最有效的本徵熱電材料。
  • PRL導讀-2019年123卷15期
    The masses and widths of these states are measured to be mΛb(6146)0=6146.17±0.33±0.22±0.16MeV, mΛb(6152)0=6152.51±0.26±0.22±0.16MeV, ΓΛb(6146)0=2.9±1.3±0.3 MeV, ΓΛb(6152)0=2.1±0.8±0.3 MeV, with a mass
  • PRL導讀-2019年123卷05期
    Lett. 123, 053902 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.053902
  • PRL導讀-2019年123卷23期
    Lett. 123, 231102(2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.231102
  • PRL導讀-2019年123卷06期
    Lett. 123, 061103 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.061103
  • PRL導讀-2019年123卷13期
    Lett. 123, 136801 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.136801
  • PRL導讀-2019年123卷12期
    Lett. 123, 122003 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.122003
  • PRL導讀-2019年123卷19期
    Lett. 123, 197601 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.197601
  • PRL導讀-2019年123卷18期
    Lett. 123, 186401 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.186401
  • PRL導讀-2021年126卷03期
    豐中子207,208Hg同位素的雷射譜:揭示N = 126 閉殼兩側電荷半徑的折彎和奇偶振蕩Day Goodacre等人利用歐洲核子中心ISOLDE上的源內共振電離雷射譜儀,首次研究了207,208Hg (Z = 80, N = 127, 128) 的電荷均方根半徑,並重新測量了202,203,206Hg (N = 122
  • PRL導讀-2020年125卷26期 第1-4模塊
    Lett. 122, 201603 (2019); J. High Energy Phys. 10 (2019) 206].Lett. 125, 261103 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.261103