PRL導讀-2019年122卷22期

2021-01-14 京師物理

金屬密度下的等離子體的

第一性原理壽命及伴隨的雙激發特徵

The accurate calculation of excited state properties of interacting electrons in the condensed phase is an immense challenge in computational physics. Here, we use state-of-the-art equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD) to calculate the dynamic structure factor, which can be experimentally measured by inelastic x-ray and electron scattering. Our calculations are performed on the uniform electron gas at densities corresponding to Wigner-Seitz radii of rs=5, 4, and 3 corresponding to the valence electron densities of common metals. We compare our results to those obtained using the random-phase approximation (RPA), which is known to provide a reasonable description of the collective plasmon excitation and which resums only a small subset of the polarizability diagrams included in EOM-CCSD. We find that EOM-CCSD, instead of providing a perturbative improvement on the RPA plasmon, predicts a many-state plasmon resonance, where each contributing state has a double-excitation character of 80% or more. This finding amounts to an ab initio treatment of the plasmon linewidth, which is in good quantitative agreement with previous diagrammatic calculations, and highlights the strongly correlated nature of lifetime effects in condensed-phase electronic structure theory.

Ab Initio Lifetime and Concomitant Double-Excitation Character of Plasmonsat Metallic Densities

A. Lewis and T. Berkelbach

Phys. Rev. Lett. 122, 226402 (2019)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.226402

相關焦點

  • PRL導讀-2019年122卷10期
    Lett. 122, 103601 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.103601
  • PRL導讀-2019年122卷16期
    Lett. 122, 167002 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.167002
  • PRL導讀-2019年122卷25期
    Lett. 122, 257203 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.257203
  • PRL導讀-2019年122卷23期
    Lett. 122, 233904 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.233904
  • PRL導讀-2019年122卷08期
    Lett. 122, 088104 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.088104
  • PRL導讀-2019年122卷15期
    Lett. 122, 150602 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.150602
  • PRL導讀:2019年122卷08期
    Lett. 122, 080502 (2019)   https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.080502     通過多通道驅動測量量子比特
  • PRL導讀-2018年120卷13期編輯推薦文章
    Lett. 120, 138301 (2018)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.138301其他相關導讀PRL導讀-2018年120卷12期PRL導讀-2018年120卷11期PRL導讀-2018年120卷10期PRL
  • PRL導讀:2019年122卷09期
    Lett. 122, 090601 (2019)     引力與天體物理   導讀:郭敏勇;責編:高思傑   超新星中微子快速味轉換的碰撞觸發   在中微子層附近可能發生的超新星中微子的快速味轉換
  • PRL導讀:2019年122卷07期
    Lett. 122, 075502 (2019)       熱電材料SnSe中的聲子坍塌和二階相變   自2014年以來,高溫Cmcm相的層狀半導體SnSe是最有效的本徵熱電材料。
  • PRL導讀-2019年123卷15期
    The masses and widths of these states are measured to be mΛb(6146)0=6146.17±0.33±0.22±0.16MeV, mΛb(6152)0=6152.51±0.26±0.22±0.16MeV, ΓΛb(6146)0=2.9±1.3±0.3 MeV, ΓΛb(6152)0=2.1±0.8±0.3 MeV, with a mass
  • PRL導讀-2019年123卷05期
    Lett. 123, 053902 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.053902
  • PRL導讀-2019年123卷23期
    Lett. 123, 231102(2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.231102
  • PRL導讀-2019年123卷06期
    Lett. 123, 061103 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.061103
  • PRL導讀-2019年123卷13期
    Lett. 123, 136801 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.136801
  • PRL導讀-2019年123卷12期
    Lett. 123, 122003 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.122003
  • PRL導讀-2019年123卷19期
    Lett. 123, 197601 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.197601
  • PRL導讀-2019年123卷18期
    Lett. 123, 186401 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.186401
  • PRL導讀-2021年126卷03期
    豐中子207,208Hg同位素的雷射譜:揭示N = 126 閉殼兩側電荷半徑的折彎和奇偶振蕩Day Goodacre等人利用歐洲核子中心ISOLDE上的源內共振電離雷射譜儀,首次研究了207,208Hg (Z = 80, N = 127, 128) 的電荷均方根半徑,並重新測量了202,203,206Hg (N = 122
  • PRL導讀-2020年125卷26期 第1-4模塊
    Lett. 122, 201603 (2019); J. High Energy Phys. 10 (2019) 206].Lett. 125, 261103 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.261103