卡爾曼濾波的原理

2021-02-20 EDN電子技術設計

在學習卡爾曼濾波器之前,首先看看為什麼叫「卡爾曼」。跟其他著名的理論(例如傅立葉變換,泰勒級數等等)一樣,卡爾曼也是一個人的名字,而跟他們不同的是,他是個現代人!

1.卡爾曼全名Rudolf Emil Kalman,匈牙利數學家,1930年出生於匈牙利首都布達佩斯。1953,1954年於麻省理工學院分別獲得電機工程學士及碩士學位。1957年於哥倫比亞大學獲得博士學位。我們現在要學習的卡爾曼濾波器,正是源於他的博士論文和1960年發表的論文《A New Approach to Linear Filtering and Prediction Problems》(線性濾波與預測問題的新方法)。

簡單來說,卡爾曼濾波器是一個「optimal recursive data processing algorithm(最優化自回歸數據處理算法)」。對於解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器 人導航,控制,傳感器數據融合甚至在軍事方面的雷達系統以及飛彈追蹤等等。近年來更被應用於計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。

2.卡爾曼濾波器的介紹
(Introduction to the Kalman Filter)

為了可以更加容易的理解卡爾曼濾波器,這裡會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程序相當的簡單,只要你理解了他的那5條公式。

在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。

假設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恆定的,也就是下一分鐘的溫度等於現在這一分鐘的溫度(假設我們用一分鐘來做時 間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前後時間是沒有關係的而且符合高斯分配(Gaussian Distribution)。另外,我們在房間裡放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白噪聲。

好了,現在對於某一分鐘我們有兩個有關於該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的噪聲來估算出房間的實際溫度值。

假如我們要估算k時刻的是實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恆定的,所以你會得到k時刻的溫度預測值是跟k-1時刻一樣的,假設是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開方,就是5)。然後,你從溫度計那裡得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。

由於我們用於估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的covariance來判斷。因為Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我們可以估算出k時刻的實際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。

現在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什麼自回歸的東西出現。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。這裡的5就是上面的k時刻你預測的那個23度溫度值的偏差,得出的2.35就是進入k+1時刻以後k時刻估算出的最優溫度值的偏差(對應於上面的3)。

就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的covariance。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!

下面就要言歸正傳,討論真正工程系統上的卡爾曼。

3.卡爾曼濾波器算法
(The Kalman Filter Algorithm)

在這一部分,我們就來描述源於Dr Kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(Probability),隨即變量(Random Variable),高斯或正態分配(Gaussian Distribution)還有State-space Model等等。但對於卡爾曼濾波器的詳細證明,這裡不能一一描述。

首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(Linear Stochastic Difference equation)來描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系統的測量值:
Z(k)=H X(k)+V(k)
上兩式子中,X(k)是k時刻的系統狀態,U(k)是k時刻對系統的控制量。A和B是系統參數,對於多模型系統,他們為矩陣。 Z(k)是k時刻的測量值,H是測量系統的參數,對於多測量系統,H為矩陣。W(k)和V(k)分別表示過程和測量的噪聲。他們被假設成高斯白噪聲 (White Gaussian Noise),他們的covariance 分別是Q,R(這裡我們假設他們不隨系統狀態變化而變化)。

對於滿足上面的條件(線性隨機微分系統,過程和測量都是高斯白噪聲),卡爾曼濾波器是最優的信息處理器。下面我們來用他們結合他們的covariances 來估算系統的最優化輸出(類似上一節那個溫度的例子)。

首先我們要利用系統的過程模型,來預測下一狀態的系統。假設現在的系統狀態是k,根據系統的模型,可以基於系統的上一狀態而預測出現在狀態:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一狀態預測的結果,X(k-1|k-1)是上一狀態最優的結果,U(k)為現在狀態的控制量,如果沒有控制量,它可以為0。

到現在為止,我們的系統結果已經更新了,可是,對應於X(k|k-1)的covariance還沒更新。我們用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A』+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)對應的covariance,P(k-1|k-1)是X(k-1|k-1)對應的 covariance,A』表示A的轉置矩陣,Q是系統過程的covariance。式子1,2就是卡爾曼濾波器5個公式當中的前兩個,也就是對系統的預 測。

現在我們有了現在狀態的預測結果,然後我們再收集現在狀態的測量值。結合預測值和測量值,我們可以得到現在狀態(k)的最優化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg為卡爾曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H』 / (H P(k|k-1) H』 + R) ……… (4)

到現在為止,我們已經得到了k狀態下最優的估算值X(k|k)。但是為了要另卡爾曼濾波器不斷的運行下去直到系統過程結束,我們還要更新k狀態下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 為1的矩陣,對於單模型單測量,I=1。當系統進入k+1狀態時,P(k|k)就是式子(2)的P(k-1|k-1)。這樣,算法就可以自回歸的運算下去。

卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個基本公式。根據這5個公式,可以很容易的實現計算機的程序。

下面,我會用程序舉一個實際運行的例子。。。

4.簡單例子
(A Simple Example)

這裡我們結合第二第三節,舉一個非常簡單的例子來說明卡爾曼濾波器的工作過程。所舉的例子是進一步描述第二節的例子,而且還會配以程序模擬結果。

根據第二節的描述,把房間看成一個系統,然後對這個系統建模。當然,我們見的模型不需要非常地精確。我們所知道的這個房間的溫度是跟前一時刻的溫度相同的,所以A=1。沒有控制量,所以U(k)=0。因此得出:
X(k|k-1)=X(k-1|k-1) ……….. (6)
式子(2)可以改成:
P(k|k-1)=P(k-1|k-1) +Q ……… (7)

因為測量的值是溫度計的,跟溫度直接對應,所以H=1。式子3,4,5可以改成以下:
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)
Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)
P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

現在我們模擬一組測量值作為輸入。假設房間的真實溫度為25度,我模擬了200個測量值,這些測量值的平均值為25度,但是加入了標準偏差為幾度的高斯白噪聲(在圖中為藍線)。

為了令卡爾曼濾波器開始工作,我們需要告訴卡爾曼兩個零時刻的初始值,是X(0|0)和P(0|0)。他們的值不用太在意,隨便給一個就可以了,因為隨著卡 爾曼的工作,X會逐漸的收斂。但是對於P,一般不要取0,因為這樣可能會令卡爾曼完全相信你給定的X(0|0)是系統最優的,從而使算法不能收斂。我選了 X(0|0)=1度,P(0|0)=10。

該系統的真實溫度為25度,圖中用黑線表示。圖中紅線是卡爾曼濾波器輸出的最優化結果(該結果在算法中設置了Q=1e-6,R=1e-1)。

××××××××××××××××××

附matlab下面的kalman濾波程序:

clear
N=200;
w(1)=0;
w=randn(1,N)
x(1)=0;
a=1;
for k=2:N;
x(k)=a*x(k-1)+w(k-1);
end


V=randn(1,N);
q1=std(V);
Rvv=q1.^2;
q2=std(x);
Rxx=q2.^2;
q3=std(w);
Rww=q3.^2;
c=0.2;
Y=c*x+V;

p(1)=0;
s(1)=0;
for t=2:N;
p1(t)=a.^2*p(t-1)+Rww;
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
p(t)=p1(t)-c*b(t)*p1(t);
end

t=1:N;
plot(t,s,'r',t,Y,'g',t,x,'b');

回覆:傅立葉、阻抗、面試、電源、FPGA、CAN查看更多好文。


相關焦點

  • 詳解卡爾曼濾波原理
    原文連結:https://blog.csdn.net/u010720661/article/details/63253509在網上看了不少與卡爾曼濾波相關的博客、論文,要麼是只談理論、缺乏感性,或者有感性認識,缺乏理論推導。
  • 卡爾曼與卡爾曼濾波
    卡爾曼濾波的一個典型實例是從一組有限的,包含噪聲的,對物體位置的觀察序列(可能有偏差)預測出物體的位置的坐標及速度。在很多工程應用(如雷達、計算機視覺)中都可以找到它的身影。同時,卡爾曼濾波也是控制理論以及控制系統工程中的一個重要課題。
  • 深度解讀:卡爾曼濾波原理
    原文連結:http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/我不得不說說卡爾曼濾波,因為它能做到的事情簡直讓人驚嘆!意外的是很少有軟體工程師和科學家對對它有所了解,這讓我感到沮喪,因為卡爾曼濾波是一個如此強大的工具,能夠在不確定性中融合信息,與此同時,它提取精確信息的能力看起來不可思議。
  • 卡爾曼濾波算法解析(一)
    在工程領域,只要涉及到信號處理問題,都繞不開一個人,那就是卡爾曼,雖然卡爾曼提出的估計理論已經過去八九十年之久
  • 卡爾曼濾波是怎麼回事?
    對於更複雜的濾波,比如維納濾波,則要根據信號的統計知識來設計權重。從統計信號處理的角度,降噪可以看成濾波的一種。降噪的目的在於突出信號本身而抑制噪聲影響。從這個角度,降噪就是給信號一個高的權重而給噪聲一個低的權重。維納濾波就是一個典型的降噪濾波器。卡爾曼濾波Kalman Filter 算法,是一種遞推預測濾波算法。
  • 卡爾曼濾波 – Kalman Filter 通俗的解釋及原理
    我們最終的預測值或濾波值是後驗預測值^X(k+1|k+1),因此最後的預測也應使 ~X(k+1|k+1) 的期望為0且方差最小(這與讓8式兩端的差最小是一致的,下面的式9體現了這一點),這樣預測值才最可靠。下面詳細說明。
  • 卡爾曼濾波應用實例
    打開APP 卡爾曼濾波應用實例 發表於 2017-10-30 09:27:47
  • 透徹理解擴展卡爾曼濾波
    卡爾曼濾波是貝葉斯濾波的一種特例,是在線性濾波的前提下,以最小均方誤差為最佳準則的。估計線性高斯模型,是對線性模型和高斯分布的優化方法。邊緣分布和條件分布的模型:卡爾曼濾波器的主要參數卡爾曼濾波器假設x(paths), z(observations)都為線性高斯的:主要參數:A是在沒有命令的情況下,由於環境因素造成的機器人的位置移動。
  • 卡爾曼濾波在電容觸控螢幕坐標定位中的應用
    結果表明,卡爾曼濾波確實能夠有效去除噪聲,從而提高觸控螢幕坐標定位的準確性,具有很高的實用性。為此,針對主要影響因素——系統噪聲進行濾波,還原初始數據的有效信號有利於提高觸控螢幕的坐標定位準確度。在眾多的濾波方法中,經過實驗分析和對比,最終證實,卡爾曼濾波在還原原始數據和算法實現方面都有較好的優勢。
  • 卡爾曼濾波及其衍生算法在SOC估計中的應用
    卡爾曼濾波作為一種去除幹擾數據,獲得優質估計結果的優秀算法,在許多領域得到應用。無人機定位、實驗數據處理以及動力電池的SOC、SOH等,需要作出參數估計的領域都有應用。本文意在初步的表述我可以理解到的卡爾曼濾波及其衍生算法的物理意義和算法間的區別。
  • 看完這篇卡爾曼濾波原理,我被驚到了!
    在網上看了不少與卡爾曼濾波相關的博客、論文,要麼是只談理論、缺乏感性,或者有感性認識,缺乏理論推導。能兼顧二者的少之又少,直到我看到了國外的一篇博文,真的驚豔到我了,不得不佩服作者這種細緻入微的精神,翻譯過來跟大家分享一下。 我不得不說說卡爾曼濾波,因為它能做到的事情簡直讓人驚嘆!
  • 車載毫米波雷達之大話卡爾曼濾波
    所以,卡爾曼濾波在毫米波雷達的應用上,就扮演著至關重要的角色。卡爾曼&卡爾曼濾波什麼是卡爾曼濾波?卡爾曼濾波和傅立葉變換、泰勒級數一樣,都是以其發明人命名。稍微不同的是,卡爾曼是個現代人!卡爾曼是匈牙利數學家,1930年出生於匈牙利首都布達佩斯。
  • 深入淺出講解卡爾曼濾波(附Matlab程序)
    我們現在要學習的卡爾曼濾波器,正是源於他的博士論文和1960年發表的論文《A New Approach to Linear Filtering and Prediction Problems》(線性濾波與預測問題的新方法)。
  • 卡爾曼濾波,如此強大的工具,你值得弄懂!
    原文連結:http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/我不得不說說卡爾曼濾波,因為它能做到的事情簡直讓人驚嘆!意外的是很少有軟體工程師和科學家對對它有所了解,這讓我感到沮喪,因為卡爾曼濾波是一個如此強大的工具,能夠在不確定性中融合信息,與此同時,它提取精確信息的能力看起來不可思議。
  • 技術|基於改進擴展卡爾曼濾波的鋰電池SOC估計
    【能源人都在看,點擊右上角加'關注'】導讀為了減小模型參數發生變化帶來的影響,提高鋰電池荷電狀態(SOC)的估計精度,提出了一種改進的擴展卡爾曼濾波算法(I-EKF)。電池荷電狀態(SOC)的定義是電池剩餘電量佔可用總電量的百分比。
  • 卡爾曼濾波應用於自動駕駛
    自主車輛的組成部分卡爾曼濾波器使用的數據來自LIDAR和RADAR 。所以現在只關注這兩個方面。為何使用卡爾曼濾波器?我們可以使用卡爾曼濾波器進行有根據的猜測,在我們對某些動態系統有不確定信息的任何地方,系統將要做什麼。在自主車輛的情況下,卡爾曼濾波器可用於根據我們的車輛接收的數據預測我們的自動駕駛車輛前方的車輛將採取的下一組動作。這是一個使用兩步預測和更新的迭代過程。
  • 深度解讀:卡爾曼濾波,如此強大的工具 你值得弄懂!
    意外的是很少有軟體工程師和科學家對對它有所了解,這讓我感到沮喪,因為卡爾曼濾波是一個如此強大的工具,能夠在不確定性中融合信息,與此同時,它提取精確信息的能力看起來不可思議。什麼是卡爾曼濾波?你可以在任何含有不確定信息的動態系統中使用卡爾曼濾波,對系統下一步的走向做出有根據的預測,即使伴隨著各種幹擾,卡爾曼濾波總是能指出真實發生的情況。
  • 深度解讀:卡爾曼濾波,如此強大的工具 你值得弄懂
    意外的是很少有軟體工程師和科學家對對它有所了解,這讓我感到沮喪,因為卡爾曼濾波是一個如此強大的工具,能夠在不確定性中融合信息,與此同時,它提取精確信息的能力看起來不可思議。什麼是卡爾曼濾波?你可以在任何含有不確定信息的動態系統中使用卡爾曼濾波,對系統下一步的走向做出有根據的預測,即使伴隨著各種幹擾,卡爾曼濾波總是能指出真實發生的情況。
  • 中科大發展出基於卡爾曼濾波的實時地震定位算法
    為此,中國科學技術大學地球和空間科學學院、地震與地球內部物理實驗室、科技部蒙城野外觀測站張海江教授研究組與加拿大卡爾加裡大學David Eaton教授合作,發展了一種基於卡爾曼濾波的實時地震定位算法。新的實時地震定位算法把基於地震震相到時的線性地震定位算法表示為信號處理中常用的卡爾曼濾波系統,可以實現當一個新的臺站被觸發後,地震的位置和發震時刻及對應的不確定性可以實時地進行估算。實時地震定位的初始地震位置假定為第一個觸發的地震臺站。新的算法利用合成地震數據以及美國加州Parkfield地區發生的地震進行了有效性測試。
  • 一代宗師卡爾曼
    卡爾曼濾波器基本原理卡爾曼濾波器基本原理圖儘管學控制的人都要學現代控制理論,但大多數人記得卡爾曼還是因為那個卡爾曼濾波器(Kalman Filter),這種濾波方法以它的發明者魯道夫·卡爾曼的名字命名一些有爭議的觀點和視角卡爾曼像牛頓,站在了巨人的肩膀上(維納、香農等),完成了《系統、控制與濾波哲學的數學原理》。(香農的資訊理論是《通信、數據壓縮等哲學的數學原理》)。牛頓寫的是《自然哲學的數學原理》,研究的是自然(系統)的物理學。而卡爾曼、維納、香農等,研究的是人造系統的物理學。