PCB設計中射頻電路的特性解析

2020-11-24 電子發燒友

PCB設計中射頻電路的特性解析

發表於 2019-04-25 14:57:44

射頻電路(RF circuit)的許多特殊特性,很難用簡短的幾句話來說明,也無法使用傳統的模擬仿真軟體來分析,譬如SPICE。不過,目前市面上有一些EDA軟體具有諧波平衡(harmonic balance)、投射法(shooting method)…等複雜的算法,可以快速和準確地仿真射頻電路。但在學習這些EDA軟體之前,必須先了解射頻電路的特性,尤其要了解一些專有名詞和物理現象的意義,因為這是射頻工程的基礎知識。

射頻的界面

無線發射器和接收器在概念上,可分為基頻與射頻兩個部份。基頻包含發射器的輸入信號之頻率範圍,也包含接收器的輸出信號之頻率範圍。基頻的頻寬決定了數據在系統中可流動的基本速率。基頻是用來改善數據流的可靠度,並在特定的數據傳輸率之下,減少發射器施加在傳輸媒介(transmission medium)的負荷。因此,PCB設計基頻電路時,需要大量的信號處理工程知識。發射器的射頻電路能將已處理過的基頻信號轉換、升頻至指定的頻道中,並將此信號注入至傳輸媒體中。相反的,接收器的射頻電路能自傳輸媒體中取得信號,並轉換、降頻成基頻。

發射器有兩個主要的PCB設計目標:第一是它們必須儘可能在消耗最少功率的情況下,發射特定的功率。第二是它們不能干擾相鄰頻道內的收發機之正常運作。就接收器而言,有三個主要的PCB設計目標:首先,它們必須準確地還原小信號;第二,它們必須能去除期望頻道以外的幹擾信號;最後一點與發射器一樣,它們消耗的功率必須很小。

小的期望信號

接收器必須很靈敏地偵測到小的輸入信號。一般而言,接收器的輸入功率可以小到1 μV。接收器的靈敏度被它的輸入電路所產生的噪聲所限制。因此,噪聲是PCB設計接收器時的一個重要考慮因素。而且,具備以仿真工具來預測噪聲的能力是不可或缺的。附圖一是一個典型的超外差(superheterodyne)接收器。接收到的信號先經過濾波,再以低噪聲放大器(LNA)將輸入信號放大。然後利用第一個本地振蕩器(LO)與此信號混合,以使此信號轉換成中頻(IF)。前端(front-end)電路的噪聲效能主要取決於LNA、混合器(mixer)和LO。雖然使用傳統的SPICE噪聲分析,可以尋找到LNA的噪聲,但對於混合器和LO而言,它卻是無用的,因為在這些區塊中的噪聲,會被很大的LO信號嚴重地影響。

小的輸入信號要求接收器必須具有極大的放大功能,通常需要120 dB這麼高的增益。在這麼高的增益下,任何自輸出端耦合(couple)回到輸入端的信號都可能產生問題。使用超外差接收器架構的重要原因是,它可以將增益分布在數個頻率裡,以減少耦合的機率。這也使得第一個LO的頻率與輸入信號的頻率不同,可以防止大的幹擾信號「汙染」到小的輸入信號。

因為不同的理由,在一些無線通訊系統中,直接轉換(direct conversion)或內差(homodyne)架構可以取代超外差架構。在此架構中,射頻輸入信號是在單一步驟下直接轉換成基頻,因此,大部份的增益都在基頻中,而且LO與輸入信號的頻率相同。在這種情況下,必須了解少量耦合的影響力,並且必須建立起「雜散信號路徑(stray signal path)」的詳細模型,譬如:穿過基板(substrate)的耦合、封裝腳位與焊線(bondwire)之間的耦合、和穿過電源線的耦合。

大的幹擾信號

接收器必須對小的信號很靈敏,即使有大的幹擾信號(阻擋物)存在時。這種情況出現在嘗試接收一個微弱或遠距的發射信號,而其附近有強大的發射器在相鄰頻道中廣播。幹擾信號可能比期待信號大60~70 dB,且可以在接收器的輸入階段以大量覆蓋的方式,或使接收器在輸入階段產生過多的噪聲量,來阻斷正常信號的接收。如果接收器在輸入階段,被幹擾源驅使進入非線性的區域,上述的那兩個問題就會發生。為避免這些問題,接收器的前端必須是非常線性的。

因此,「線性」也是PCB設計接收器時的一個重要考慮因素。由於接收器是窄頻電路,所以非線性是以測量「交調失真(intermodulation distortion)」來統計的。這牽涉到利用兩個頻率相近,並位於中心頻帶內(in band)的正弦波或餘弦波來驅動輸入信號,然後再測量其交互調變的乘積。大體而言,SPICE是一種耗時耗成本的仿真軟體,因為它必須執行許多次的循環運算以後,才能得到所需要的頻率解析度,以了解失真的情形。

相鄰頻道的幹擾

失真也在發射器中扮演著重要的角色。發射器在輸出電路所產生的非線性,可能使傳送信號的頻寬散布於相鄰的頻道中。這種現象稱為「頻譜的再成長(spectral regrowth)」。在信號到達發射器的功率放大器(PA)之前,其頻寬被限制著;但在PA內的「交調失真」會導致頻寬再次增加。如果頻寬增加的太多,發射器將無法符合其相鄰頻道的功率要求。當傳送數字調變信號時,實際上,是無法用SPICE來預測頻譜的再成長。因為大約有1000個數字符號(symbol)的傳送作業必須被仿真,以求得代表性的頻譜,並且還需要結合高頻率的載波,這些將使SPICE的瞬態分析變得不切實際。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • PCB設計中射頻接口和射頻電路的特性
    打開APP PCB設計中射頻接口和射頻電路的特性 肖冰 發表於 2019-09-21 05:49:00 射頻電路(RF circuit)的許多特殊特性,很難用簡短的幾句話來說明,也無法使用傳統的模擬仿真軟體來分析,譬如SPICE。
  • PCB射頻電路電源和接地的設計方法解析
    射頻(RF)電路的電路板布局應在理解電路板結構、電源布線和接地的基本原則的基礎上進行。本文探討了相關的基本原則,並提供了一些實用的、經過驗證的電源布線、電源旁路和接地技術,可有效提高RF設計的性能指標。考慮到實際設計中PLL雜散信號對於電源耦合、接地和濾波器元件的位置非常敏感,本文著重討論了有關PLL雜散信號抑制的方法。
  • 汽車收音機射頻電路設計指南
    汽車收音機應用環境的特殊性對電路性能具有更高的要求,而射頻電路的設計是實現高性能的關鍵。本文介紹了TDA7513的射頻電路設計方法,根據實際設計經驗提出了提高射頻電路EMC特性和噪聲特性的設計方法和措施,並指出了射頻電路性能測試的注意要點。
  • 射頻電路設計中的常見問題,你中過幾個?
    第一種:數字電路模塊和模擬電路模塊之間的幹擾如果模擬電路(射頻)和數字電路單獨工作,可能各自都工作良好。但是,一旦將二者放在同一塊電路板上,使用同一個電源一起工作,整個系統很可能就不穩定。這主要是因為數位訊號頻繁地在地和正電源(>3V)之間擺動,而且周期特別短,常常是納秒級的。
  • 射頻MOS功率放大電路模擬器的設計方案分析,射頻功率放大器的特性...
    ARF448A/B的高頻增益特性如圖1所示。從圖中可以看出,當頻率達到50MHz時,ARF448的增益約為17dB。從圖中可知,輸出功率為150W時的增益最大,高出設計值約4dB,這主要是因為C類功率放大器工作過程中需要進行壓縮,因此實際工作時還是能夠滿足設計要求的。而最大效率則出現在輸入和輸出之間實現共扼匹配的時候。
  • 射頻低噪聲放大器電路的結構設計
    本文引用地址:http://www.eepw.com.cn/article/259590.htm1、射頻LNA設計要求低噪聲放大器(LNA)作為射頻信號傳輸鏈路的第一級,它的噪聲係數特性決定了整個射頻電路前端的噪聲性能
  • 汽車收音機射頻電路設計指南 —電路圖天天讀(131)
    本文介紹了TDA7513的射頻電路設計方法,根據實際設計經驗提出了提高射頻電路EMC特性和噪聲特性的設計方法和措施,並指出了射頻電路性能測試的注意要點。射頻電路是收音機電路設計的重點和難點,如果射頻電路設計不好,收音機的噪限靈敏度和信噪比以及其它技術指標都會大大下降,甚至只能手動收到很少的幾個廣播電臺,自動搜索電臺功能失效。
  • 射頻識別電路中高頻功放的設計
    射頻識別是一種非接觸式的自動識別技術,他通過射頻信號自動識別目標對象並獲取相關數據,識別工作無需人工幹預,可工作於各種惡劣環境。射頻識別系統由閱讀器和應答器(標籤)構成。當他工作時,閱讀器通過天線發送出一定頻率的射頻信號,當標籤進入磁場時產生感應電流從而獲得能量,發送出自身編碼等信息被讀取器讀取並解碼後送至電腦主機進行有關處理。高頻功率放大器是閱讀器的關鍵部件,主要功能是對標籤信號的返回信號進行功率放大。1 工作原理  圖1為射頻識別電路中的高頻功率放大器原理框圖。
  • 射頻電路設計中電感的一些重要參數
    前幾天本站發表了一篇「電感Q值對射頻巴倫(Balun)的影響」的文章,裡面降到了射頻電路設計中電感的重要性。其實回想很多產品設計過程中,越是基礎的問題,就越是值得引起注意,所以 筆者打算與讀者分享本文。
  • 新型射頻開關轉換電路的設計與應用
    通常RF系統中有許多輸入輸出的埠,用多埠網絡分析儀分析散射特性價格比較昂貴。所以一般要用開關對多輸入多輸出的信號進行切換,然後用比較簡單的二埠網絡分析儀進行分析測量。在核磁共振系統中,一般接收系統的通道個數小於天線線圈的個數,所以多路線圈也要應用開關進行切換選擇。 目前一般的設計中用現成的開關晶片實現切換功能。
  • 談談射頻電路設計及經驗
    RF電路設計的常見問題  1、數字電路模塊和模擬電路模塊之間的幹擾  如果模擬電路(射頻)和數字電路單獨工作,可能各自工作良好。但是,一旦將二者放在同一塊電路板上,使用同一個電源一起工作,整個系統很可能就不穩定。這主要是因為數位訊號頻繁地在地和正電源(>3 V)之間擺動,而且周期特別短,常常是納秒級的。
  • 核磁共振系統中射頻開關設計
    通常RF系統中有許多輸入輸出的埠,用多埠網絡分析儀分析散射特性價格比較昂貴。在本設計中,設計了一種新型的應用pin diodes的射頻開關轉換電路,實現的功能是4路RF輸入信號選擇其中任意2路RF信號輸出。  總體結構設計  開關將應用於此共振的測試系統,它基於LabView軟體平臺,由計算機提供給電壓控制信號。
  • 射頻電路設計的常見問題及五大經驗總結
    射頻電路板設計由於在理論上還有很多不確定性,因此常被形容為一種「黑色藝術」,但這個觀點只有部分正確,RF電路板設計也有許多可以遵循的準則和不應該被忽視的法則。RF電路設計的常見問題1、數字電路模塊和模擬電路模塊之間的幹擾如果模擬電路(射頻)和數字電路單獨工作,可能各自工作良好。但是,一旦將二者放在同一塊電路板上,使用同一個電源一起工作,整個系統很可能就不穩定。這主要是因為數位訊號頻繁地在地和正電源(>3 V)之間擺動,而且周期特別短,常常是納秒級的。由於較大的振幅和較短的切換時間。
  • 一種新型射頻導熱治療儀的功率放大電路的仿真設計
    射頻功率放大器不僅在通訊系統中得到廣泛應用,還逐漸被應用於其他領域內。本文為一種新型射頻導熱治療儀所設計的大功率射頻放大器電路,滿足工作於射頻低端。藉助ADS仿真軟體採用負載牽引技術的設計方式,通過對整體效率、功率增益、功率容量等一系列的對比。得出最佳輸入、輸出阻抗,並進行阻抗匹配電路的設計。
  • 射頻MOS功率放大電路模擬器的設計方案分析
    2.50MHz/250W射頻功率放大器的設計高壓射頻功率放大器的設計與傳統低壓固態射頻功率放大器的設計過程有著顯著的不同,以下50MHz/250W功率放大器的設計過程將有助於工程技術人員更好的掌握高壓射頻功率放大器的設計方法。
  • PCB布局設計電路中的耦合電容解析
    PCB布局設計電路中的耦合電容解析 上海韜放電子 發表於 2021-01-12 13:53:51 無論是為新IC設計電路,還是為具有分立組件的PCB布局設計電路,設計中的導體組之間都將存在耦合電容。
  • 射頻電路的原理及應用
    二.射頻電路的原理及發展   射頻電路最主要的應用領域就是無線通信,圖1.1為一個典型的無線通信系統的框圖,下面以這個系統為例分析射頻電路在整個無線通信系統中的作用。放大模塊一般採用電晶體的共射極結構,其輸入阻抗必須與位於低噪聲放大器前面的濾波器的輸出阻抗相匹配,從而保證最佳傳輸功率和最小反射係數,對於射頻電路設計來說,這種匹配是必須的。此外,低噪聲放大器的輸出阻抗必須與其後端的混頻器輸入阻抗相匹配,同樣能保證放大器輸出的信號能完全、無反射的輸入到混頻器中去。
  • 全面詳解射頻技術原理電路及設計電路
    (在以上基本配置之外,還應包括相應的應用軟體)  射頻技術—典型的射頻電路  射頻電路最主要的應用領域就是無線通信,圖1為一個典型的無線通信系統的框圖,下面以這個系統為例分析射頻電路在整個無線通信系統中的作用。
  • 射頻電路設計要點最全匯總
    【1】射頻電路中元器件封裝的注意事項本文引用地址:http://www.eepw.com.cn/article/201809/391593.htm  成功的RF設計必須仔細注意整個設計過程中每個步驟及每個細節,這意味著必須在設計開始階段就要進行徹底的
  • EDA365:案例圖解射頻PCB設計的幾個要點
    在電子產品和設備中,電路板是一個不可缺少的部件,它起著電路系統的電氣和機械等的連接作用。如何將電路中的元器件按照一定的要求,在PCB上排列組合起來,是PCB設計師的主要任務之一。布局設計不是簡單的將元器件在PCB上排列起來,或者電路得以連通就行的。