電阻電流檢測的基本原理詳解

2020-11-22 電子產品世界

電流檢測電阻,也稱為分流器,為人所知已有數十年之久。但是,目前電阻的應用已不局限於以往的狹窄範圍,阻值極低並幾乎沒有誤差的電阻和非常精確的檢測數據採集系統。為研發人員開闢了十年前無法想像的應用領域。

本文引用地址:http://www.eepw.com.cn/article/194238.htm

車輛驅動的控制和調節大多要求工作電流在1-100A之間,在特殊情況下(例如,氧傳感器預熱),短時間內要求2-300A的電流,車輛啟動時電流可達到1500A。在電池和電源管理系統中,還有更為極端的情況:車輛運行中,持續電流為100-300A;而在靜止狀態下,電流只有幾毫安,所有這些都必須精確檢測出來。

在最小的空間實現最佳的檢測結果是汽車行業對汽車電子系統最常見的要求之一。這正是分流器技術的優勢。但是,由於電阻本身結構和電阻材料會導致電阻在實際應用中產生完全不同的效果,僅僅通過比較數據表還無法找到合適的電阻。以下將通過計算示例描述一些實現最佳設計的重要參數。

電阻電流檢測的基本原理
根據歐姆定律,在檢測通過電阻的電流時,電勢差被作為電流檢測的直接檢測值。毫無疑問,用高於1Ohm的電阻可以檢測數百毫安的電流。但如果電流達10-20安培,情況就完全不同了,因為電阻中的功耗(P=R*I2)就無法忽略了。雖然可以嘗試通過降低電阻阻值來限制功耗,但由於檢測的電壓也同時相應降低,檢測的阻值往往會受到估值解析度和精度的限制。

通常,電阻兩端的檢測電壓可由以下公式得出:

U=R*I+Uth+Uind+Uiext+......
Uth=熱電動勢
Uind=感應電壓
Uiext=埠引線壓降

上述情況,與電流無關的因素引起的誤差電壓會影響檢測結果,因此設計人員必須清楚了解這個原因,並且應通過合理的布線設計尤其是通過選擇合適的電阻來最大程度降低電壓誤差造成的影響。

雖然任何導電材料都可以用來製作電阻。但是這樣的元器件根本不適合用於電流採樣,原因是:電阻值受溫度、時間、電壓、頻率等眾多參數的影響。

R=R(T,t,P,Hz,U,A,μ,p,....)

理想的完全不受以上參數影響的電流檢測電阻是不存在的,那麼實際的電阻可通過下文表格中所列的特性參數,例如電阻溫度係數、長期穩定性、熱電動勢、功率負荷、電感、線性度等來表述。

其中的部分特性本質上取決於材料,其它一些特性受元器件設計的影響,再有一些特性由生產工藝決定,如下表中所描述。


xxx=影響很大
xx=影響適中
x=影響很小,但值得注意

一百多年前(1889年),來自德國迪倫堡的IsabellenhütteHeusler公司(簡稱伊薩公司)研製出了精密電阻錳鎳銅合金(Manganin),自這種合金問世以來,其優異的特性奠定了精密檢測技術的基礎,例如也用於標準電阻器中。其他合金材料Isaohm和Zeranin以其132和29μOhm*cm的電阻率係數分別向上及向下補充和拓展了電阻率範圍。所有合金很大程度上滿足了電阻材料要求,並且成功地應用了數年之久,而其中Manganin合金因在世界上廣泛的知名度承擔了特殊角色。

在過去25年,為了應對基於磁場的電流檢測方法的發展,Isabellenhütte致力於通過對分流電阻的物理優化更加廣泛的拓展了精確檢測電流的範圍。隨著補償、溫度係數和運算放大器幹擾信號得到一步步的改進,所選的電阻值可以降低至毫歐範圍,從而很大程度上解決了大電流條件下的大功率損耗問題(P=R*I2)。但是,同時由於故障電壓(其中包括幹擾、熱電動勢等)導致相對誤差的極大增加,諸如低電感和低熱電動勢等等的特性就極為重要。

在下面的內容中,我們將簡要討論一些最重要的技術參數。

溫度係數(TCR)

圖表顯示的是Manganin電阻的典型拋物線溫度特性曲線。由於此特性僅由材料成分決定,因此可以生產具有極高可複製性和極低批次差異的電阻器。

溫度係數以ppm/K為單位,定義式如下:

TCR=(R(T)-R(T0))/R(T0)*1/(T-T0)=dR/R(T0)*1/R(T0)

其中,參考溫度T0的值通常是20°C或25°C。如果溫度曲線是與Manganin的曲線相似的彎曲曲線,則還必須給出用於檢測溫度係數的上限溫度,例如TCR(20-60)。低阻值範圍內通常採用TCR值為幾百個ppm/K的厚膜技術電阻器。圖中紅色曲線表示TCR為200ppm/K的電阻的溫度特徵,50°C的溫度變化就足以導致電阻值變化超出1%。這樣電阻器無法進行精確的電流檢測。更極端的情況在PCB板上用蝕刻銅線作為電流檢測電阻器,由於銅的TCR值達到4000ppm/K(或0.4%/K),也就是說僅僅10°C的溫度變化都足以導致4%的阻值漂移。

熱電動勢(Uth)

當溫度輕微升高或者降低時,在不同材料的接觸面上會產生所謂的熱電動勢,這種效應對低阻值電阻的影響尤其值得關注,因為通常在此處檢測的電壓非常微小,所以微伏級的熱電動勢能夠嚴重地影響檢測結果。

直到今天,在許多講義和教課書中電阻合金康銅(Konstantan)依舊是繞線和衝壓分流器的主要材料之一,儘管它具有良好的TCR,但其對銅的熱電勢高達40μV/K。由於10℃的溫差導致400μV的電壓誤差,使用1毫歐的分流電阻檢測4A電流,檢測結果誤差增大了10%。更為嚴重的是,假如考慮到電阻尺寸,經常被忽略的珀爾帖效應(Peltiereffect)可以通過接觸面之間的相互加熱或降溫作用,將溫差增大到20℃以上(非常極端的例子是電阻一端的焊接部位出現熔化)。即使檢測電路在恆定電流狀態下,由於珀爾帖效應(Peltiereffect)而產生的溫差及溫差電動勢也會導致較明顯的電流起伏。在切斷電源之後,溫差消失之前,仍然能夠明顯檢測到電流,根據設計規格和阻值的不同,電流誤差能有幾個百分點或達到幾個安培。上面提到的精密電阻合金與銅在熱電動勢方面完全匹配,上述的效應可以完全被忽略,例如,0.3mOhm電阻器會在切斷100A的電流之後產生不到1μV的電壓(對應於3mA的電流)。

長期穩定性

長期穩定性對於任何傳感器都極為重要,因為即使在使用數年之後,用戶仍希望它能夠保持最初校準的精度。這意味著電阻材料必須耐腐蝕,而且在使用壽命周期內不得發生任何合金成分變化。介質均勻的複合合金Manganin、Zeranin和Isaohm經過嚴謹的鍛燒和穩定處理從而達到熱力學基本狀態。這類的合金的穩定性可以保持在ppm/年範圍內,就像百餘年來Isabellenhütte(伊薩公司)憑藉其作為國際檢測定標的標準電阻器向世人所展示和證實的一樣。

圖表中展示了在140°C溫度下工作超過1000小時的貼片電阻器的穩定性曲線。大約-0.2%的輕微漂移是由於生產過程中微小變形所導致的柵格缺損的所引起的,並且說明元件進一步趨於穩定,也就是說穩定性將變得更好。阻值漂移速度很大程度取決於溫度,因此溫度在+100℃時,這種漂移實際是檢測不出來的。

光敏電阻相關文章:光敏電阻工作原理


相關焦點

  • 電阻電流檢測的基本原理
    電流檢測電阻,也稱為分流器,為人所知已有數十年之久。但是,目前電阻的應用已不局限於以往的狹窄範圍,阻值極低並幾乎沒有誤差的電阻和非常精確的檢測數據採集系統。為研發人員開闢了十年前無法想像的應用領域。在電池和電源管理系統中,還有更為極端的情況:車輛運行中,持續電流為100-300A;而在靜止狀態下,電流只有幾毫安,所有這些都必須精確檢測出來。在最小的空間實現最佳的檢測結果是汽車行業對汽車電子系統最常見的要求之一。這正是分流器技術的優勢。但是,由於電阻本身結構和電阻材料會導致電阻在實際應用中產生完全不同的效果,僅僅通過比較數據表還無法找到合適的電阻。
  • 大電流接地電阻測量儀的檢測方法
    目前用於安全防護檢測的大電流接地電阻測量儀已越來越廣泛地運用於家用電器、絕緣材料、電動電熱器具等產品的質量檢測中,而此種儀器本身的量值傳遞卻由於其大電流的限制,存在許多問題。普通的接地電阻測量儀檢定裝置不能用於這種儀器的檢測,下面介紹兩種檢測方法。
  • 數字萬用表測量電流的基本原理
    數字萬用表測量電流的基本原理是利用了歐姆定理:I=U/R。數字式萬用表的有多個電流檔位,對應多個取樣電阻,測量時,將萬用表串聯接在被測電路中,選擇對應的檔位,流過的電流在取樣電阻上會產生電壓,將此電壓值送入A/D模數轉換晶片,由模擬量轉換成數字量,再通過電子計數器計數,最後將數值顯示在屏幕上。萬用表的內部有串聯採樣電阻。
  • 電流檢測電路設計圖詳解 —電路圖天天讀(150)
    打開APP 電流檢測電路設計圖詳解 —電路圖天天讀(150) Dick 發表於 2015-04-27 16:30:37   通常所說的電流檢測是用來檢測某部件、或者導線通過的電流,一般用互感器、分流器等將電流信號轉化成電壓信號,然後再對其進行處理放大,作為後面電路保護、檢測使用。
  • 電流檢測電路設計方案匯總(六款模擬電路設計原理圖詳解)
    電流檢測電路設計方案匯總(六款模擬電路設計原理圖詳解) 佚名 發表於 2018-02-06 11:31:39 電流檢測電路設計方案(一)
  • 帶有輸入串聯電阻的電流檢測放大器的性能詳解
    例如,電流檢測放大器的共模電壓可高達28V (MAX4372和MAX4173)和76V (MAX4080和MAX4081)。電流檢測放大器的這一特性對高邊電流檢測應用非常有用,在這些應用中需要放大高壓線路上檢測電阻兩端的小信號電壓,並將放大的電壓反饋至低壓ADC或低壓模擬控制環路。在這類應用中,通常需要在源端對電流檢測信號(如檢測電阻兩端的信號)進行濾波。
  • 電阻的基本原理
    一、電阻的基本原理電阻,和電感、電容一起,是電子學三大基本無源器件;從能量的角度,
  • 詳解電流驅動電流檢測電路
    讓我們首先探究其基本概念,它是一個運算放大器和MOSFET電流源(注意,如果您不介意基極電流會導致1%左右的誤差,也可以使用雙極電晶體)。圖1A顯示了一個基本的運算放大器電流源電路。把它垂直翻轉,這樣我們可在圖1B中做高邊電流檢測,在圖1C中重新繪製,來描繪我們將如何使用分流電壓作為輸入電壓,圖1D是最終的電路。
  • 關於開爾文電橋的原理詳解
    關於開爾文電橋的原理詳解 Srudeep Patil 發表於 2019-08-26 11:40:22 在必須測量電池流入或流出電流的應用中,超高精度、高邊電流檢測至關重要
  • 電流檢測技術綜述
    (浙江巨磁智能技術有限公司 magtron lennon)摘要:現如今,電流檢測的技術在工業發展的推動下日臻完善。然而並不是傳統的方案就不可取,在不同的應用環境下還是有一席用武之地。電流檢測之後通常被用來執行測量「多大」電流和當電流「過大」時動作判斷的兩個基本功能。
  • 電感減震器工作原理,電感減震器工作原理詳解
    導讀:電感減震器工作原理,電感減震器工作原理詳解如果汽車失去了減震器是什麼滋味?那我們完全可以聯想到古代出行工具「馬車」帶來的別樣震感。汽車減震器是為了改善汽車行駛的平順性和舒適性,對於需要經常跑崎嶇不平的山路的司機朋友來說,減震器就是非常重要的存在了。
  • 開關模式電源電流檢測電阻的降壓調節器介紹和何處放置檢測電阻
    開關模式電源電流檢測電阻的降壓調節器介紹和何處放置檢測電阻 易水寒 發表於 2018-07-03 16:04:31 電流檢測電阻的位置連同開關穩壓器架構決定了要檢測的電流
  • 多功能高壓側電流檢測放大器LT6107的原理、特點及應用分析
    多功能高壓側電流檢測放大器LT6107的原理、特點及應用分析 龔斌 發表於 2021-01-06 07:14:00 引言 LT6107是凌力爾特公司(Linear Technology Corporation
  • 分流器原理
    分流器原理--簡介  分流器是用來測量直流電流用的,主要是根據在直流電流通過電阻時會在電阻的兩端產生電壓的原理製成的。分流器實際上就是一個阻值很小的電阻,當有直流電流通過時,產生壓降,供直流電流表顯示。所謂分流,即分一小的電流去推動表指示,該小電流(mA)與大迴路裡的電流(1A-幾十A)比例越小,電流表指示讀數的線性就越好,也更精確。
  • 電阻測試儀的基本原理和選購
    電阻測試儀的基本原理和選購一、耐電壓測試儀耐電壓測試儀又叫電氣絕緣強度試驗儀或叫介質強度測試儀。將一規定交流或直流高壓施加在電器帶電部分和非帶電部分(一般為外殼)之間以檢查電器的絕緣材料所能承受耐壓能力的試驗。
  • 電流檢測電阻多種形狀和尺寸選擇方式
    作者:Marcus O』Sullivan 簡介 電流檢測電阻有多種形狀和尺寸可供選擇,用於測量諸多汽車、功率控制和工業系統中的電流。使用極低值電阻(幾 mΩ或以下)時,焊料的電阻將在檢測元件電阻中佔據很大比例,結果大幅增加測量誤差。
  • 熱電阻測溫電路設計詳解—電路圖天天讀(297)
    打開APP 熱電阻測溫電路設計詳解—電路圖天天讀(297) 佚名 發表於 2015-12-14 13:45:02   本文分析了測溫系統中恆流源信號調理模數轉換等功能電路的工作原理和設計依據,並給出電路參數。
  • 並聯電阻分流電感技術詳解
    在高頻開關系統中,通過並聯電阻測量電流時,您可能會觀察到正弦波電流紋波幅值過大、方波紋波或快速轉換電流過衝或過高的高頻噪聲等問題。100kHz開關穩壓器的方波輸出被L1和C1濾波,使得電流紋波是正弦波。H1捕獲實際電流波形(由ROUT1探測),E1捕獲並聯電阻的精確電壓及電感(由Rout探測),就像電流檢測放大器(20V電源有助於方便地偏置和縮放以同時查看輸出波形)。 您可能遇到不正確的正弦波波紋信號幅度和波形的問題。這裡建模的一個實例中,波紋信號太大,使人懷疑整個測量的準確性。
  • 讓電流檢測更精確的AMR技術,電流檢測方法的介紹
    1、Newton表示,電流檢測是一種應用廣泛的技術,幾乎在所有類型的電子產品中都可以找到;目前主流的電流檢測方法主要有三種,其中最常見的是使用具備運算放大器的分流電阻(shunt resistor)進行信號調節;利用分流電阻,只需測量電阻上的壓降就可以得到電流值。
  • 基爾霍夫電流定律例題詳解_基爾霍夫電壓定律例題詳解
    打開APP 基爾霍夫電流定律例題詳解_基爾霍夫電壓定律例題詳解 佚名 發表於 2017-08-15 17:37:00   19世紀