由PPmoney大數據算法總監黃文堅和美國Uptake數據科學家唐源傾力原創的新書《TensorFlow實戰》,即將由電子工業出版社發行。這是國內首本由Google TensorFlow團隊官方推薦的教程,兩位作者也均是TensorFlow開發者,其中唐源是TensorFlow開發團隊的committer。本書結合了大量實例代碼,深入淺出地介紹了如何使用TensorFlow創建各種深度學習模型,是初學者入門的最佳書籍。
《TensorFlow實戰》
首著問世,Google TensorFlow研發團隊內部推薦的中文教程
TensorFlow Contributor、Committer原創
TensorFlow工程研發總監Rajat Monga、深度學習領域泰鬥顏水成等讚譽好評
作者:黃文堅、唐源
《TensorFlow實戰》是由PPmoney大數據算法總監黃文堅和美國Uptake數據科學家唐源傾力原創。本書是Google TensorFlow研發團隊內部推薦的教程,兩位作者均是TensorFlow開發者,其中唐源是TensorFlow研發團隊的Committer。本書結合了大量代碼實例,深入淺出地介紹了如何使用TensorFlow。
代碼基於TensorFlow 1.0版API
深度剖析如何用TensorFlow實現主流神經網絡:
詳述TensorBoard、多GPU並行、分布式並行等組件的使用方法
TF.Learn從入門到精通,TF.Contrib詳解
Google近日發布了TensorFlow 1.0候選版,這第一個穩定版將是深度學習框架發展中的裡程碑的一步。自TensorFlow於2015年底正式開源,距今已有一年多,這期間TensorFlow不斷給人以驚喜,推出了分布式版本,服務框架TensorFlow Serving,可視化工具TensorFlow,上層封裝TF.Learn,其他語言(Go、Java、Rust、Haskell)的綁定、Windows的支持、JIT編譯器XLA、動態計算圖框架Fold,以及數不勝數的經典模型在TensorFlow上的實現(Inception Net、SyntaxNet等)。在這一年多時間,TensorFlow已從初入深度學習框架大戰的新星,成為了幾近壟斷的行業事實標準。
本書希望用最簡單易懂的語言帶領大家探索TensorFlow(基於1.0版本API)。在本書中我們講述了TensorFlow的基礎原理,TF和其他框架的異同。並用具體的代碼完整地實現了各種類型的深度神經網絡:AutoEncoder、MLP、CNN(AlexNet,VGGNet,Inception Net,ResNet)、Word2Vec、RNN(LSTM,Bi-RNN)、Deep Reinforcement Learning(Policy Network、Value Network)。此外,本書還講解了TensorBoard、多GPU並行、分布式並行、TF.Learn和其他TF.Contrib組件。本書希望能幫讀者快速入門TensorFlow和深度學習,在工業界或者研究中快速地將想法落地為可實踐的模型。
希望快速上手TensorFlow、了解深度學習技術及其應用實踐的人士,以及機器學習、分布式計算領域的學生、從業者。特別是對正在學習深度學習技術,立志從事AI相關行業,成為數據科學家的人來說,本書更是非常實用的工具書。
黃文堅,PPmoney大數據算法總監,負責集團的風控、理財、網際網路證券等業務的數據挖掘工作。Google TensorFlow Contributor。前明略數據技術合伙人,領導了對諸多大型銀行、保險公司、基金的數據挖掘項目,包括建立金融風控模型、新聞輿情分析、保險復購預測等。曾就職於阿里巴巴搜尋引擎算法團隊,負責天貓個性化搜索系統。曾參加阿里巴巴大數據推薦算法大賽,於7000多支隊伍中獲得前10名。本科、研究生就讀於香港科技大學,曾在頂級會議和期刊SIGMOBILE MobiCom、IEEE Transactions on Image Processing發表論文,研究成果獲美國計算機協會移動計算大會(MobiCom)最佳移動應用技術冠軍,並獲得兩項美國專利和一項中國專利。
唐源,目前在芝加哥的Uptake公司帶領團隊建立用於多個物聯網領域的數據科學引擎進行條件和健康監控,也建立了公司的預測模型引擎,現在被用於航空、能源等大型機械領域。一直活躍在開源軟體社區,是TensorFlow和DMLC的成員,是TensorFlow、XGBoost、MXNet等軟體的committer,TF.Learn、ggfortify等軟體的作者,以及caret、pandas等軟體的貢獻者。曾獲得谷歌Open Source Peer Bonus,以及多項高校和企業編程競賽的獎項。在美國賓州州立大學獲得榮譽數學學位,曾在本科學習期間成為創業公司DataNovo的核心創始成員,研究專利數據挖掘、無關鍵字現有技術搜索、策略推薦等。
谷歌TensorFlow工程研發總監Rajat Monga力薦:
「AI and Machine Learning are going to be a key part of our future. We made TensorFlow open source to bring these technologies to everyone and help move the world forward. This book is a great example of the TensorFlow community giving back to multiply everyone’s efforts. 」
360首席科學家,顏水成:
TensorFlow的開源對整個學術界及工業界都產生了巨大的影響,可以比做機器學習的Hadoop。本書涵蓋了從多層感知機、CNN、RNN到強化學習等一系列模型的TensorFlow實現。在詳盡地介紹算法和模型的細節的同時穿插實際的代碼,對幫助讀者快速建立算法和代碼的聯繫大有助益。對入門TensorFlow和深度學習的研究者來說是一份非常好的學習材料。
北京大學計算機系教授 網絡與信息系統研究所所長 崔斌:
TensorFlow是基於Computation Graph的機器學習框架,支持GPU和分布式,是目前最有影響力的開源深度學習系統。TensorFlow的工程實現非常優秀,拓展也非常靈活,對機器學習尤其是深度學習的推廣大有裨益。本書結合了大量的實際例子,清晰地講解了如何使用TensorFlow構築常見的深度學習模型,可通讀也可作為工具書查閱。在本書上市前,國內還沒有介紹TensorFlow的技術書籍,推薦對TensorFlow或深度學習感興趣的人士閱讀此書。
PPmoney CTO 康德勝:
深度學習乃至人工智慧正逐漸在FinTech領域發揮巨大的作用,其應用包括自動報告生成、金融智能搜索、量化交易和智能投顧。而TensorFlow為金融業方便地使用深度學習提供了可能。本書介紹了通過TensorFlow實現各類神經網絡的案例,非常適合初學者快速入門。
格靈深瞳CTO 鄧亞峰:
TensorFlow是Google開源的一套深度學習框架,已發展成為最主流的深度學習框架,目前在市面上沒有看到關於TensorFlow的中文書籍出版。本書一方面一步步地介紹了TensorFlow的使用方法,使得沒有使用過的人可以很快上手使用;另一方面,講解了諸如卷積神經網絡、循環神經網絡、強化學習、自編碼器等深度學習知識,使得不懂深度學習的人也可以入門。本書在介紹基本知識和原理的同時,用實例進行講解,比較適合初學者學習使用TensorFlow及深度學習知識。
小米圖像算法資深工程師 萬韶華:
《TensorFlow實戰》由淺入深,透過大量的代碼實例,為讀者揭開深度學習的層層面紗,加深理論理解的同時,也更好地聯繫了實際應用。
如果你對TensorFlow感興趣或者正在使用該門技術,歡迎留言評論,小編會從中選擇3名用戶免費贈送此書哦~
推薦指數:★★★★★
掃描二維碼購買《TensorFlow實戰》