來源:ICML會議
作者:圖靈助手
[1]. AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs.
作者: Gabriele Abbati,Philippe Wenk,Michael A. Osborne,Andreas Krause,Bernhard Schölkopf,Stefan Bauer,
連結: http://proceedings.mlr.press/v97/abbati19a.html
[2]. Dynamic Weights in Multi-Objective Deep Reinforcement Learning.
作者: Axel Abels,Diederik M. Roijers,Tom Lenaerts,Ann Nowé,Denis Steckelmacher,
連結: http://proceedings.mlr.press/v97/abels19a.html
[3]. MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing.
作者: Sami Abu-El-Haija,Bryan Perozzi,Amol Kapoor,Nazanin Alipourfard,Kristina Lerman,Hrayr Harutyunyan,Greg Ver Steeg,Aram Galstyan,
連結: http://proceedings.mlr.press/v97/abu-el-haija19a.html
[4]. Communication-Constrained Inference and the Role of Shared Randomness.
作者: Jayadev Acharya,Clément L. Canonne,Himanshu Tyagi,
連結: http://proceedings.mlr.press/v97/acharya19a.html
[5]. Distributed Learning with Sublinear Communication.
作者: Jayadev Acharya,Chris De Sa,Dylan J. Foster,Karthik Sridharan,
連結: http://proceedings.mlr.press/v97/acharya19b.html
[6]. Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters.
作者: Jayadev Acharya,Ziteng Sun,
連結: http://proceedings.mlr.press/v97/acharya19c.html
[7]. Learning Models from Data with Measurement Error: Tackling Underreporting.
作者: Roy Adams,Yuelong Ji,Xiaobin Wang,Suchi Saria,
連結: http://proceedings.mlr.press/v97/adams19a.html
[8]. TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning.
作者: Tameem Adel,Adrian Weller,
連結: http://proceedings.mlr.press/v97/adel19a.html
[9]. PAC Learnability of Node Functions in Networked Dynamical Systems.
作者: Abhijin Adiga,Chris J. Kuhlman,Madhav Marathe,S. S. Ravi,Anil Vullikanti,
連結: http://proceedings.mlr.press/v97/adiga19a.html
[10]. Static Automatic Batching In TensorFlow.
作者: Ashish Agarwal,
連結: http://proceedings.mlr.press/v97/agarwal19a.html
[11]. Efficient Full-Matrix Adaptive Regularization.
作者: Naman Agarwal,Brian Bullins,Xinyi Chen,Elad Hazan,Karan Singh,Cyril Zhang,Yi Zhang,
連結: http://proceedings.mlr.press/v97/agarwal19b.html
[12]. Online Control with Adversarial Disturbances.
作者: Naman Agarwal,Brian Bullins,Elad Hazan,Sham M. Kakade,Karan Singh,
連結: http://proceedings.mlr.press/v97/agarwal19c.html
[13]. Fair Regression: Quantitative Definitions and Reduction-Based Algorithms.
作者: Alekh Agarwal,Miroslav Dudík,Zhiwei Steven Wu,
連結: http://proceedings.mlr.press/v97/agarwal19d.html
[14]. Learning to Generalize from Sparse and Underspecified Rewards.
作者: Rishabh Agarwal,Chen Liang,Dale Schuurmans,Mohammad Norouzi,
連結: http://proceedings.mlr.press/v97/agarwal19e.html
[15]. The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions.
作者: Raj Agrawal,Brian L. Trippe,Jonathan H. Huggins,Tamara Broderick,
連結: http://proceedings.mlr.press/v97/agrawal19a.html
[16]. Understanding the Impact of Entropy on Policy Optimization.
作者: Zafarali Ahmed,Nicolas Le Roux,Mohammad Norouzi,Dale Schuurmans,
連結: http://proceedings.mlr.press/v97/ahmed19a.html
[17]. Fairwashing: the risk of rationalization.
作者: Ulrich Aïvodji,Hiromi Arai,Olivier Fortineau,Sébastien Gambs,Satoshi Hara,Alain Tapp,
連結: http://proceedings.mlr.press/v97/aivodji19a.html
[18]. Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search.
作者: Youhei Akimoto,Shinichi Shirakawa,Nozomu Yoshinari,Kento Uchida,Shota Saito,Kouhei Nishida,
連結: http://proceedings.mlr.press/v97/akimoto19a.html
[19]. Projections for Approximate Policy Iteration Algorithms.
作者: Riad Akrour,Joni Pajarinen,Jan Peters,Gerhard Neumann,
連結: http://proceedings.mlr.press/v97/akrour19a.html
[20]. Validating Causal Inference Models via Influence Functions.
作者: Ahmed M. Alaa,Mihaela van der Schaar,
連結: http://proceedings.mlr.press/v97/alaa19a.html
[21]. Multi-objective training of Generative Adversarial Networks with multiple discriminators.
作者: Isabela Albuquerque,João Monteiro,Thang Doan,Breandan Considine,Tiago H. Falk,Ioannis Mitliagkas,
連結: http://proceedings.mlr.press/v97/albuquerque19a.html
[22]. Graph Element Networks: adaptive, structured computation and memory.
作者: Ferran Alet,Adarsh Keshav Jeewajee,Maria Bauzá Villalonga,Alberto Rodriguez,Tomás Lozano-Pérez,Leslie Pack Kaelbling,
連結: http://proceedings.mlr.press/v97/alet19a.html
[23]. Analogies Explained: Towards Understanding Word Embeddings.
作者: Carl Allen,Timothy M. Hospedales,
連結: http://proceedings.mlr.press/v97/allen19a.html
[24]. Infinite Mixture Prototypes for Few-shot Learning.
作者: Kelsey R. Allen,Evan Shelhamer,Hanul Shin,Joshua B. Tenenbaum,
連結: http://proceedings.mlr.press/v97/allen19b.html
[25]. A Convergence Theory for Deep Learning via Over-Parameterization.
作者: Zeyuan Allen-Zhu,Yuanzhi Li,Zhao Song,
連結: http://proceedings.mlr.press/v97/allen-zhu19a.html
[26]. Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation.
作者: Ahsan S. Alvi,Bin Xin Ru,Jan-Peter Calliess,Stephen J. Roberts,Michael A. Osborne,
連結: http://proceedings.mlr.press/v97/alvi19a.html
[27]. Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy.
作者: Kareem Amin,Alex Kulesza,Andres Muñoz Medina,Sergei Vassilvitskii,
連結: http://proceedings.mlr.press/v97/amin19a.html
[28]. Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Value Approximation.
作者: Marco Ancona,Cengiz Öztireli,Markus H. Gross,
連結: http://proceedings.mlr.press/v97/ancona19a.html
[29]. Scaling Up Ordinal Embedding: A Landmark Approach.
作者: Jesse Anderton,Javed A. Aslam,
連結: http://proceedings.mlr.press/v97/anderton19a.html
[30]. Sorting Out Lipschitz Function Approximation.
作者: Cem Anil,James Lucas,Roger B. Grosse,
連結: http://proceedings.mlr.press/v97/anil19a.html
[31]. Sparse Multi-Channel Variational Autoencoder for the Joint Analysis of Heterogeneous Data.
作者: Luigi Antelmi,Nicholas Ayache,Philippe Robert,Marco Lorenzi,
連結: http://proceedings.mlr.press/v97/antelmi19a.html
[32]. Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks.
作者: Sanjeev Arora,Simon S. Du,Wei Hu,Zhiyuan Li,Ruosong Wang,
連結: http://proceedings.mlr.press/v97/arora19a.html
[33]. Distributed Weighted Matching via Randomized Composable Coresets.
作者: Sepehr Assadi,MohammadHossein Bateni,Vahab S. Mirrokni,
連結: http://proceedings.mlr.press/v97/assadi19a.html
[34]. Stochastic Gradient Push for Distributed Deep Learning.
作者: Mahmoud Assran,Nicolas Loizou,Nicolas Ballas,Michael Rabbat,
連結: http://proceedings.mlr.press/v97/assran19a.html
[35]. Bayesian Optimization of Composite Functions.
作者: Raul Astudillo,Peter I. Frazier,
連結: http://proceedings.mlr.press/v97/astudillo19a.html
[36]. Benefits and Pitfalls of the Exponential Mechanism with Applications to Hilbert Spaces and Functional PCA.
作者: Jordan Awan,Ana Kenney,Matthew Reimherr,Aleksandra B. Slavkovic,
連結: http://proceedings.mlr.press/v97/awan19a.html
[37]. Feature Grouping as a Stochastic Regularizer for High-Dimensional Structured Data.
作者: Sergül Aydöre,Bertrand Thirion,Gaël Varoquaux,
連結: http://proceedings.mlr.press/v97/aydore19a.html
[38]. Beyond the Chinese Restaurant and Pitman-Yor processes: Statistical Models with double power-law behavior.
作者: Fadhel Ayed,Juho Lee,Francois Caron,
連結: http://proceedings.mlr.press/v97/ayed19a.html
[39]. Scalable Fair Clustering.
作者: Arturs Backurs,Piotr Indyk,Krzysztof Onak,Baruch Schieber,Ali Vakilian,Tal Wagner,
連結: http://proceedings.mlr.press/v97/backurs19a.html
[40]. Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs.
作者: Yogesh Balaji,Hamed Hassani,Rama Chellappa,Soheil Feizi,
連結: http://proceedings.mlr.press/v97/balaji19a.html
[41]. Provable Guarantees for Gradient-Based Meta-Learning.
作者: Maria-Florina Balcan,Mikhail Khodak,Ameet Talwalkar,
連結: http://proceedings.mlr.press/v97/balcan19a.html
[42]. Open-ended learning in symmetric zero-sum games.
作者: David Balduzzi,Marta Garnelo,Yoram Bachrach,Wojciech Czarnecki,Julien Pérolat,Max Jaderberg,Thore Graepel,
連結: http://proceedings.mlr.press/v97/balduzzi19a.html
[43]. Concrete Autoencoders: Differentiable Feature Selection and Reconstruction.
作者: Muhammed Fatih Balin,Abubakar Abid,James Y. Zou,
連結: http://proceedings.mlr.press/v97/balin19a.html
[44]. HOList: An Environment for Machine Learning of Higher Order Logic Theorem Proving.
作者: Kshitij Bansal,Sarah M. Loos,Markus N. Rabe,Christian Szegedy,Stewart Wilcox,
連結: http://proceedings.mlr.press/v97/bansal19a.html
[45]. Structured agents for physical construction.
作者: Victor Bapst,Alvaro Sanchez-Gonzalez,Carl Doersch,Kimberly L. Stachenfeld,Pushmeet Kohli,Peter W. Battaglia,Jessica B. Hamrick,
連結: http://proceedings.mlr.press/v97/bapst19a.html
[46]. Learning to Route in Similarity Graphs.
作者: Dmitry Baranchuk,Dmitry Persiyanov,Anton Sinitsin,Artem Babenko,
連結: http://proceedings.mlr.press/v97/baranchuk19a.html
[47]. A Personalized Affective Memory Model for Improving Emotion Recognition.
作者: Pablo V. A. Barros,German Ignacio Parisi,Stefan Wermter,
連結: http://proceedings.mlr.press/v97/barros19a.html
[48]. Scale-free adaptive planning for deterministic dynamics & discounted rewards.
作者: Peter L. Bartlett,Victor Gabillon,Jennifer Healey,Michal Valko,
連結: http://proceedings.mlr.press/v97/bartlett19a.html
[49]. Pareto Optimal Streaming Unsupervised Classification.
作者: Soumya Basu,Steven Gutstein,Brent Lance,Sanjay Shakkottai,
連結: http://proceedings.mlr.press/v97/basu19a.html
[50]. Categorical Feature Compression via Submodular Optimization.
作者: MohammadHossein Bateni,Lin Chen,Hossein Esfandiari,Thomas Fu,Vahab S. Mirrokni,Afshin Rostamizadeh,
連結: http://proceedings.mlr.press/v97/bateni19a.html
[51]. Noise2Self: Blind Denoising by Self-Supervision.
作者: Joshua Batson,Loïc Royer,
連結: http://proceedings.mlr.press/v97/batson19a.html
[52]. Efficient optimization of loops and limits with randomized telescoping sums.
作者: Alex Beatson,Ryan P. Adams,
連結: http://proceedings.mlr.press/v97/beatson19a.html
[53]. Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces.
作者: Philipp Becker,Harit Pandya,Gregor H. W. Gebhardt,Cheng Zhao,C. James Taylor,Gerhard Neumann,
連結: http://proceedings.mlr.press/v97/becker19a.html
[54]. Switching Linear Dynamics for Variational Bayes Filtering.
作者: Philip Becker-Ehmck,Jan Peters,Patrick van der Smagt,
連結: http://proceedings.mlr.press/v97/becker-ehmck19a.html
[55]. Active Learning for Probabilistic Structured Prediction of Cuts and Matchings.
作者: Sima Behpour,Anqi Liu,Brian D. Ziebart,
連結: http://proceedings.mlr.press/v97/behpour19a.html
[56]. Invertible Residual Networks.
作者: Jens Behrmann,Will Grathwohl,Ricky T. Q. Chen,David Duvenaud,Jörn-Henrik Jacobsen,
連結: http://proceedings.mlr.press/v97/behrmann19a.html
[57]. Greedy Layerwise Learning Can Scale To ImageNet.
作者: Eugene Belilovsky,Michael Eickenberg,Edouard Oyallon,
連結: http://proceedings.mlr.press/v97/belilovsky19a.html
[58]. Overcoming Multi-model Forgetting.
作者: Yassine Benyahia,Kaicheng Yu,Kamil Bennani-Smires,Martin Jaggi,Anthony C. Davison,Mathieu Salzmann,Claudiu Musat,
連結: http://proceedings.mlr.press/v97/benyahia19a.html
[59]. Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning.
作者: Frederik Benzing,Marcelo Matheus Gauy,Asier Mujika,Anders Martinsson,Angelika Steger,
連結: http://proceedings.mlr.press/v97/benzing19a.html
[60]. Adversarially Learned Representations for Information Obfuscation and Inference.
作者: Martín Bertrán,Natalia Martínez,Afroditi Papadaki,Qiang Qiu,Miguel R. D. Rodrigues,Galen Reeves,Guillermo Sapiro,
連結: http://proceedings.mlr.press/v97/bertran19a.html
[61]. Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case.
作者: Alina Beygelzimer,Dávid Pál,Balázs Szörényi,Devanathan Thiruvenkatachari,Chen-Yu Wei,Chicheng Zhang,
連結: http://proceedings.mlr.press/v97/beygelzimer19a.html
[62]. Analyzing Federated Learning through an Adversarial Lens.
作者: Arjun Nitin Bhagoji,Supriyo Chakraborty,Prateek Mittal,Seraphin B. Calo,
連結: http://proceedings.mlr.press/v97/bhagoji19a.html
[63]. Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference.
作者: Yatao An Bian,Joachim M. Buhmann,Andreas Krause,
連結: http://proceedings.mlr.press/v97/bian19a.html
[64]. More Efficient Off-Policy Evaluation through Regularized Targeted Learning.
作者: Aurélien Bibaut,Ivana Malenica,Nikos Vlassis,Mark J. van der Laan,
連結: http://proceedings.mlr.press/v97/bibaut19a.html
[65]. A Kernel Perspective for Regularizing Deep Neural Networks.
作者: Alberto Bietti,Grégoire Mialon,Dexiong Chen,Julien Mairal,
連結: http://proceedings.mlr.press/v97/bietti19a.html
[66]. Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff.
作者: Yochai Blau,Tomer Michaeli,
連結: http://proceedings.mlr.press/v97/blau19a.html
[67]. Correlated bandits or: How to minimize mean-squared error online.
作者: Vinay Praneeth Boda,Prashanth L. A.,
連結: http://proceedings.mlr.press/v97/boda19a.html
[68]. Adversarial Attacks on Node Embeddings via Graph Poisoning.
作者: Aleksandar Bojchevski,Stephan Günnemann,
連結: http://proceedings.mlr.press/v97/bojchevski19a.html
[69]. Online Variance Reduction with Mixtures.
作者: Zalán Borsos,Sebastian Curi,Kfir Yehuda Levy,Andreas Krause,
連結: http://proceedings.mlr.press/v97/borsos19a.html
[70]. Compositional Fairness Constraints for Graph Embeddings.
作者: Avishek Joey Bose,William L. Hamilton,
連結: http://proceedings.mlr.press/v97/bose19a.html
[71]. Unreproducible Research is Reproducible.
作者: Xavier Bouthillier,César Laurent,Pascal Vincent,
連結: http://proceedings.mlr.press/v97/bouthillier19a.html
[72]. Blended Conditonal Gradients.
作者: Gábor Braun,Sebastian Pokutta,Dan Tu,Stephen Wright,
連結: http://proceedings.mlr.press/v97/braun19a.html
[73]. Coresets for Ordered Weighted Clustering.
作者: Vladimir Braverman,Shaofeng H.-C. Jiang,Robert Krauthgamer,Xuan Wu,
連結: http://proceedings.mlr.press/v97/braverman19a.html
[74]. Target Tracking for Contextual Bandits: Application to Demand Side Management.
作者: Margaux Brégère,Pierre Gaillard,Yannig Goude,Gilles Stoltz,
連結: http://proceedings.mlr.press/v97/bregere19a.html
[75]. Active Manifolds: A non-linear analogue to Active Subspaces.
作者: Robert A. Bridges,Anthony D. Gruber,Christopher Felder,Miki E. Verma,Chelsey Hoff,
連結: http://proceedings.mlr.press/v97/bridges19a.html
[76]. Conditioning by adaptive sampling for robust design.
作者: David H. Brookes,Hahnbeom Park,Jennifer Listgarten,
連結: http://proceedings.mlr.press/v97/brookes19a.html
[77]. Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations.
作者: Daniel S. Brown,Wonjoon Goo,Prabhat Nagarajan,Scott Niekum,
連結: http://proceedings.mlr.press/v97/brown19a.html
[78]. Deep Counterfactual Regret Minimization.
作者: Noam Brown,Adam Lerer,Sam Gross,Tuomas Sandholm,
連結: http://proceedings.mlr.press/v97/brown19b.html
[79]. Understanding the Origins of Bias in Word Embeddings.
作者: Marc-Etienne Brunet,Colleen Alkalay-Houlihan,Ashton Anderson,Richard S. Zemel,
連結: http://proceedings.mlr.press/v97/brunet19a.html
[80]. Low Latency Privacy Preserving Inference.
作者: Alon Brutzkus,Ran Gilad-Bachrach,Oren Elisha,
連結: http://proceedings.mlr.press/v97/brutzkus19a.html
[81]. Why do Larger Models Generalize Better? A Theoretical Perspective via the XOR Problem.
作者: Alon Brutzkus,Amir Globerson,
連結: http://proceedings.mlr.press/v97/brutzkus19b.html
[82]. Adversarial examples from computational constraints.
作者: Sébastien Bubeck,Yin Tat Lee,Eric Price,Ilya P. Razenshteyn,
連結: http://proceedings.mlr.press/v97/bubeck19a.html
[83]. Self-similar Epochs: Value in arrangement.
作者: Eliav Buchnik,Edith Cohen,Avinatan Hassidim,Yossi Matias,
連結: http://proceedings.mlr.press/v97/buchnik19a.html
[84]. Learning Generative Models across Incomparable Spaces.
作者: Charlotte Bunne,David Alvarez-Melis,Andreas Krause,Stefanie Jegelka,
連結: http://proceedings.mlr.press/v97/bunne19a.html
[85]. Rates of Convergence for Sparse Variational Gaussian Process Regression.
作者: David R. Burt,Carl Edward Rasmussen,Mark van der Wilk,
連結: http://proceedings.mlr.press/v97/burt19a.html
[86]. What is the Effect of Importance Weighting in Deep Learning?
作者: Jonathon Byrd,Zachary Chase Lipton,
連結: http://proceedings.mlr.press/v97/byrd19a.html
[87]. A Quantitative Analysis of the Effect of Batch Normalization on Gradient Descent.
作者: Yongqiang Cai,Qianxiao Li,Zuowei Shen,
連結: http://proceedings.mlr.press/v97/cai19a.html
[88]. Accelerated Linear Convergence of Stochastic Momentum Methods in Wasserstein Distances.
作者: Bugra Can,Mert Gürbüzbalaban,Lingjiong Zhu,
連結: http://proceedings.mlr.press/v97/can19a.html
[89]. Active Embedding Search via Noisy Paired Comparisons.
作者: Gregory Canal,Andrew K. Massimino,Mark A. Davenport,Christopher J. Rozell,
連結: http://proceedings.mlr.press/v97/canal19a.html
[90]. Dynamic Learning with Frequent New Product Launches: A Sequential Multinomial Logit Bandit Problem.
作者: Junyu Cao,Wei Sun,
連結: http://proceedings.mlr.press/v97/cao19a.html
[91]. Competing Against Nash Equilibria in Adversarially Changing Zero-Sum Games.
作者: Adrian Rivera Cardoso,Jacob D. Abernethy,He Wang,Huan Xu,
連結: http://proceedings.mlr.press/v97/cardoso19a.html
[92]. Automated Model Selection with Bayesian Quadrature.
作者: Henry Chai,Jean-Francois Ton,Michael A. Osborne,Roman Garnett,
連結: http://proceedings.mlr.press/v97/chai19a.html
[93]. Learning Action Representations for Reinforcement Learning.
作者: Yash Chandak,Georgios Theocharous,James Kostas,Scott M. Jordan,Philip S. Thomas,
連結: http://proceedings.mlr.press/v97/chandak19a.html
[94]. Dynamic Measurement Scheduling for Event Forecasting using Deep RL.
作者: Chun-Hao Chang,Mingjie Mai,Anna Goldenberg,
連結: http://proceedings.mlr.press/v97/chang19a.html
[95]. On Symmetric Losses for Learning from Corrupted Labels.
作者: Nontawat Charoenphakdee,Jongyeong Lee,Masashi Sugiyama,
連結: http://proceedings.mlr.press/v97/charoenphakdee19a.html
[96]. Online learning with kernel losses.
作者: Niladri S. Chatterji,Aldo Pacchiano,Peter L. Bartlett,
連結: http://proceedings.mlr.press/v97/chatterji19a.html
[97]. Neural Network Attributions: A Causal Perspective.
作者: Aditya Chattopadhyay,Piyushi Manupriya,Anirban Sarkar,Vineeth N. Balasubramanian,
連結: http://proceedings.mlr.press/v97/chattopadhyay19a.html
[98]. PAC Identification of Many Good Arms in Stochastic Multi-Armed Bandits.
作者: Arghya Roy Chaudhuri,Shivaram Kalyanakrishnan,
連結: http://proceedings.mlr.press/v97/chaudhuri19a.html
[99]. Nearest Neighbor and Kernel Survival Analysis: Nonasymptotic Error Bounds and Strong Consistency Rates.
作者: George H. Chen,
連結: http://proceedings.mlr.press/v97/chen19a.html
[100]. Stein Point Markov Chain Monte Carlo.
作者: Wilson Ye Chen,Alessandro Barp,François-Xavier Briol,Jackson Gorham,Mark A. Girolami,Lester W. Mackey,Chris J. Oates,
連結: http://proceedings.mlr.press/v97/chen19b.html
[101]. Proportionally Fair Clustering.
作者: Xingyu Chen,Brandon Fain,Liang Lyu,Kamesh Munagala,
連結: http://proceedings.mlr.press/v97/chen19d.html
[102]. Information-Theoretic Considerations in Batch Reinforcement Learning.
作者: Jinglin Chen,Nan Jiang,
連結: http://proceedings.mlr.press/v97/chen19e.html
[103]. Generative Adversarial User Model for Reinforcement Learning Based Recommendation System.
作者: Xinshi Chen,Shuang Li,Hui Li,Shaohua Jiang,Yuan Qi,Le Song,
連結: http://proceedings.mlr.press/v97/chen19f.html
[104]. Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels.
作者: Pengfei Chen,Benben Liao,Guangyong Chen,Shengyu Zhang,
連結: http://proceedings.mlr.press/v97/chen19g.html
[105]. A Gradual, Semi-Discrete Approach to Generative Network Training via Explicit Wasserstein Minimization.
作者: Yucheng Chen,Matus Telgarsky,Chao Zhang,Bolton Bailey,Daniel Hsu,Jian Peng,
連結: http://proceedings.mlr.press/v97/chen19h.html
[106]. Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation.
作者: Xinyang Chen,Sinan Wang,Mingsheng Long,Jianmin Wang,
連結: http://proceedings.mlr.press/v97/chen19i.html
[107]. Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications.
作者: Pin-Yu Chen,Lingfei Wu,Sijia Liu,Indika Rajapakse,
連結: http://proceedings.mlr.press/v97/chen19j.html
[108]. Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number.
作者: Zaiyi Chen,Yi Xu,Haoyuan Hu,Tianbao Yang,
連結: http://proceedings.mlr.press/v97/chen19k.html
[109]. Multivariate-Information Adversarial Ensemble for Scalable Joint Distribution Matching.
作者: Ziliang Chen,Zhanfu Yang,Xiaoxi Wang,Xiaodan Liang,Xiaopeng Yan,Guanbin Li,Liang Lin,
連結: http://proceedings.mlr.press/v97/chen19l.html
[110]. Robust Decision Trees Against Adversarial Examples.
作者: Hongge Chen,Huan Zhang,Duane S. Boning,Cho-Jui Hsieh,
連結: http://proceedings.mlr.press/v97/chen19m.html
[111]. RaFM: Rank-Aware Factorization Machines.
作者: Xiaoshuang Chen,Yin Zheng,Jiaxing Wang,Wenye Ma,Junzhou Huang,
連結: http://proceedings.mlr.press/v97/chen19n.html
[112]. Control Regularization for Reduced Variance Reinforcement Learning.
作者: Richard Cheng,Abhinav Verma,Gábor Orosz,Swarat Chaudhuri,Yisong Yue,Joel Burdick,
連結: http://proceedings.mlr.press/v97/cheng19a.html
[113]. Predictor-Corrector Policy Optimization.
作者: Ching-An Cheng,Xinyan Yan,Nathan D. Ratliff,Byron Boots,
連結: http://proceedings.mlr.press/v97/cheng19b.html
[114]. Variational Inference for sparse network reconstruction from count data.
作者: Julien Chiquet,Stéphane Robin,Mahendra Mariadassou,
連結: http://proceedings.mlr.press/v97/chiquet19a.html
[115]. Random Walks on Hypergraphs with Edge-Dependent Vertex Weights.
作者: Uthsav Chitra,Benjamin J. Raphael,
連結: http://proceedings.mlr.press/v97/chitra19a.html
[116]. Neural Joint Source-Channel Coding.
作者: Kristy Choi,Kedar Tatwawadi,Aditya Grover,Tsachy Weissman,Stefano Ermon,
連結: http://proceedings.mlr.press/v97/choi19a.html
[117]. Beyond Backprop: Online Alternating Minimization with Auxiliary Variables.
作者: Anna Choromanska,Benjamin Cowen,Sadhana Kumaravel,Ronny Luss,Mattia Rigotti,Irina Rish,Paolo Diachille,Viatcheslav Gurev,Brian Kingsbury,Ravi Tejwani,Djallel Bouneffouf,
連結: http://proceedings.mlr.press/v97/choromanska19a.html
[118]. Unifying Orthogonal Monte Carlo Methods.
作者: Krzysztof Choromanski,Mark Rowland,Wenyu Chen,Adrian Weller,
連結: http://proceedings.mlr.press/v97/choromanski19a.html
[119]. Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning.
作者: Casey Chu,Jose H. Blanchet,Peter W. Glynn,
連結: http://proceedings.mlr.press/v97/chu19a.html
[120]. MeanSum: A Neural Model for Unsupervised Multi-Document Abstractive Summarization.
作者: Eric Chu,Peter J. Liu,
連結: http://proceedings.mlr.press/v97/chu19b.html
[121]. Weak Detection of Signal in the Spiked Wigner Model.
作者: Hye Won Chung,Ji Oon Lee,
連結: http://proceedings.mlr.press/v97/chung19a.html
[122]. New results on information theoretic clustering.
作者: Ferdinando Cicalese,Eduardo Sany Laber,Lucas Murtinho,
連結: http://proceedings.mlr.press/v97/cicalese19a.html
[123]. Sensitivity Analysis of Linear Structural Causal Models.
作者: Carlos Cinelli,Daniel Kumor,Bryant Chen,Judea Pearl,Elias Bareinboim,
連結: http://proceedings.mlr.press/v97/cinelli19a.html
[124]. Dimensionality Reduction for Tukey Regression.
作者: Kenneth L. Clarkson,Ruosong Wang,David P. Woodruff,
連結: http://proceedings.mlr.press/v97/clarkson19a.html
[125]. On Medians of (Randomized) Pairwise Means.
作者: Stéphan Clémençon,Pierre Laforgue,Patrice Bertail,
連結: http://proceedings.mlr.press/v97/clemencon19a.html
[126]. Quantifying Generalization in Reinforcement Learning.
作者: Karl Cobbe,Oleg Klimov,Christopher Hesse,Taehoon Kim,John Schulman,
連結: http://proceedings.mlr.press/v97/cobbe19a.html
[127]. Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models.
作者: Eldan Cohen,J. Christopher Beck,
連結: http://proceedings.mlr.press/v97/cohen19a.html
[128]. Learning Linear-Quadratic Regulators Efficiently with only √T Regret.
作者: Alon Cohen,Tomer Koren,Yishay Mansour,
連結: http://proceedings.mlr.press/v97/cohen19b.html
[129]. Certified Adversarial Robustness via Randomized Smoothing.
作者: Jeremy M. Cohen,Elan Rosenfeld,J. Zico Kolter,
連結: http://proceedings.mlr.press/v97/cohen19c.html
[130]. Gauge Equivariant Convolutional Networks and the Icosahedral CNN.
作者: Taco Cohen,Maurice Weiler,Berkay Kicanaoglu,Max Welling,
連結: http://proceedings.mlr.press/v97/cohen19d.html
[131]. CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning.
作者: Cédric Colas,Pierre-Yves Oudeyer,Olivier Sigaud,Pierre Fournier,Mohamed Chetouani,
連結: http://proceedings.mlr.press/v97/colas19a.html
[132]. A fully differentiable beam search decoder.
作者: Ronan Collobert,Awni Hannun,Gabriel Synnaeve,
連結: http://proceedings.mlr.press/v97/collobert19a.html
[133]. Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets.
作者: Robert Cornish,Paul Vanetti,Alexandre Bouchard-Côté,George Deligiannidis,Arnaud Doucet,
連結: http://proceedings.mlr.press/v97/cornish19a.html
[134]. Adjustment Criteria for Generalizing Experimental Findings.
作者: Juan D. Correa,Jin Tian,Elias Bareinboim,
連結: http://proceedings.mlr.press/v97/correa19a.html
[135]. Online Learning with Sleeping Experts and Feedback Graphs.
作者: Corinna Cortes,Giulia DeSalvo,Claudio Gentile,Mehryar Mohri,Scott Yang,
連結: http://proceedings.mlr.press/v97/cortes19a.html
[136]. Active Learning with Disagreement Graphs.
作者: Corinna Cortes,Giulia DeSalvo,Mehryar Mohri,Ningshan Zhang,Claudio Gentile,
連結: http://proceedings.mlr.press/v97/cortes19b.html
[137]. Shape Constraints for Set Functions.
作者: Andrew Cotter,Maya R. Gupta,Heinrich Jiang,Erez Louidor,James Muller,Taman Narayan,Serena Wang,Tao Zhu,
連結: http://proceedings.mlr.press/v97/cotter19a.html
[138]. Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints.
作者: Andrew Cotter,Maya R. Gupta,Heinrich Jiang,Nathan Srebro,Karthik Sridharan,Serena Wang,Blake E. Woodworth,Seungil You,
連結: http://proceedings.mlr.press/v97/cotter19b.html
[139]. Monge blunts Bayes: Hardness Results for Adversarial Training.
作者: Zac Cranko,Aditya Krishna Menon,Richard Nock,Cheng Soon Ong,Zhan Shi,Christian J. Walder,
連結: http://proceedings.mlr.press/v97/cranko19a.html
[140]. Boosted Density Estimation Remastered.
作者: Zac Cranko,Richard Nock,
連結: http://proceedings.mlr.press/v97/cranko19b.html
[141]. Submodular Cost Submodular Cover with an Approximate Oracle.
作者: Victoria G. Crawford,Alan Kuhnle,My T. Thai,
連結: http://proceedings.mlr.press/v97/crawford19a.html
[142]. Flexibly Fair Representation Learning by Disentanglement.
作者: Elliot Creager,David Madras,Jörn-Henrik Jacobsen,Marissa A. Weis,Kevin Swersky,Toniann Pitassi,Richard S. Zemel,
連結: http://proceedings.mlr.press/v97/creager19a.html
[143]. Anytime Online-to-Batch, Optimism and Acceleration.
作者: Ashok Cutkosky,
連結: http://proceedings.mlr.press/v97/cutkosky19a.html
[144]. Matrix-Free Preconditioning in Online Learning.
作者: Ashok Cutkosky,Tamás Sarlós,
連結: http://proceedings.mlr.press/v97/cutkosky19b.html
[145]. Minimal Achievable Sufficient Statistic Learning.
作者: Milan Cvitkovic,Günther Koliander,
連結: http://proceedings.mlr.press/v97/cvitkovic19a.html
[146]. Open Vocabulary Learning on Source Code with a Graph-Structured Cache.
作者: Milan Cvitkovic,Badal Singh,Animashree Anandkumar,
連結: http://proceedings.mlr.press/v97/cvitkovic19b.html
[147]. The Value Function Polytope in Reinforcement Learning.
作者: Robert Dadashi,Marc G. Bellemare,Adrien Ali Taïga,Nicolas Le Roux,Dale Schuurmans,
連結: http://proceedings.mlr.press/v97/dadashi19a.html
[148]. Bayesian Optimization Meets Bayesian Optimal Stopping.
作者: Zhongxiang Dai,Haibin Yu,Bryan Kian Hsiang Low,Patrick Jaillet,
連結: http://proceedings.mlr.press/v97/dai19a.html
[149]. Policy Certificates: Towards Accountable Reinforcement Learning.
作者: Christoph Dann,Lihong Li,Wei Wei,Emma Brunskill,
連結: http://proceedings.mlr.press/v97/dann19a.html
[150]. Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations.
作者: Tri Dao,Albert Gu,Matthew Eichhorn,Atri Rudra,Christopher Ré,
連結: http://proceedings.mlr.press/v97/dao19a.html
[151]. A Kernel Theory of Modern Data Augmentation.
作者: Tri Dao,Albert Gu,Alexander Ratner,Virginia Smith,Chris De Sa,Christopher Ré,
連結: http://proceedings.mlr.press/v97/dao19b.html
[152]. TarMAC: Targeted Multi-Agent Communication.
作者: Abhishek Das,Théophile Gervet,Joshua Romoff,Dhruv Batra,Devi Parikh,Mike Rabbat,Joelle Pineau,
連結: http://proceedings.mlr.press/v97/das19a.html
[153]. Teaching a black-box learner.
作者: Sanjoy Dasgupta,Daniel Hsu,Stefanos Poulis,Xiaojin Zhu,
連結: http://proceedings.mlr.press/v97/dasgupta19a.html
[154]. Stochastic Deep Networks.
作者: Gwendoline de Bie,Gabriel Peyré,Marco Cuturi,
連結: http://proceedings.mlr.press/v97/de-bie19a.html
[155]. Learning-to-Learn Stochastic Gradient Descent with Biased Regularization.
作者: Giulia Denevi,Carlo Ciliberto,Riccardo Grazzi,Massimiliano Pontil,
連結: http://proceedings.mlr.press/v97/denevi19a.html
[156]. A Multitask Multiple Kernel Learning Algorithm for Survival Analysis with Application to Cancer Biology.
作者: Onur Dereli,Ceyda Oguz,Mehmet Gönen,
連結: http://proceedings.mlr.press/v97/dereli19a.html
[157]. Learning to Convolve: A Generalized Weight-Tying Approach.
作者: Nichita Diaconu,Daniel E. Worrall,
連結: http://proceedings.mlr.press/v97/diaconu19a.html
[158]. Sever: A Robust Meta-Algorithm for Stochastic Optimization.
作者: Ilias Diakonikolas,Gautam Kamath,Daniel Kane,Jerry Li,Jacob Steinhardt,Alistair Stewart,
連結: http://proceedings.mlr.press/v97/diakonikolas19a.html
[159]. Approximated Oracle Filter Pruning for Destructive CNN Width Optimization.
作者: Xiaohan Ding,Guiguang Ding,Yuchen Guo,Jungong Han,Chenggang Yan,
連結: http://proceedings.mlr.press/v97/ding19a.html
[160]. Noisy Dual Principal Component Pursuit.
作者: Tianyu Ding,Zhihui Zhu,Tianjiao Ding,Yunchen Yang,Daniel P. Robinson,Manolis C. Tsakiris,René Vidal,
連結: http://proceedings.mlr.press/v97/ding19b.html
[161]. Finite-Time Analysis of Distributed TD(0) with Linear Function Approximation on Multi-Agent Reinforcement Learning.
作者: Thinh T. Doan,Siva Theja Maguluri,Justin Romberg,
連結: http://proceedings.mlr.press/v97/doan19a.html
[162]. Trajectory-Based Off-Policy Deep Reinforcement Learning.
作者: Andreas Doerr,Michael Volpp,Marc Toussaint,Sebastian Trimpe,Christian Daniel,
連結: http://proceedings.mlr.press/v97/doerr19a.html
[163]. Generalized No Free Lunch Theorem for Adversarial Robustness.
作者: Elvis Dohmatob,
連結: http://proceedings.mlr.press/v97/dohmatob19a.html
[164]. Width Provably Matters in Optimization for Deep Linear Neural Networks.
作者: Simon S. Du,Wei Hu,
連結: http://proceedings.mlr.press/v97/du19a.html
[165]. Provably efficient RL with Rich Observations via Latent State Decoding.
作者: Simon S. Du,Akshay Krishnamurthy,Nan Jiang,Alekh Agarwal,Miroslav Dudík,John Langford,
連結: http://proceedings.mlr.press/v97/du19b.html
[166]. Gradient Descent Finds Global Minima of Deep Neural Networks.
作者: Simon S. Du,Jason D. Lee,Haochuan Li,Liwei Wang,Xiyu Zhai,
連結: http://proceedings.mlr.press/v97/du19c.html
[167]. Incorporating Grouping Information into Bayesian Decision Tree Ensembles.
作者: Junliang Du,Antonio R. Linero,
連結: http://proceedings.mlr.press/v97/du19d.html
[168]. Task-Agnostic Dynamics Priors for Deep Reinforcement Learning.
作者: Yilun Du,Karthik Narasimhan,
連結: http://proceedings.mlr.press/v97/du19e.html
[169]. Optimal Auctions through Deep Learning.
作者: Paul Duetting,Zhe Feng,Harikrishna Narasimhan,David C. Parkes,Sai Srivatsa Ravindranath,
連結: http://proceedings.mlr.press/v97/duetting19a.html
[170]. Wasserstein of Wasserstein Loss for Learning Generative Models.
作者: Yonatan Dukler,Wuchen Li,Alex Tong Lin,Guido Montúfar,
連結: http://proceedings.mlr.press/v97/dukler19a.html
[171]. Learning interpretable continuous-time models of latent stochastic dynamical systems.
作者: Lea Duncker,Gergo Bohner,Julien Boussard,Maneesh Sahani,
連結: http://proceedings.mlr.press/v97/duncker19a.html
[172]. Autoregressive Energy Machines.
作者: Conor Durkan,Charlie Nash,
連結: http://proceedings.mlr.press/v97/durkan19a.html
[173]. Band-limited Training and Inference for Convolutional Neural Networks.
作者: Adam Dziedzic,John Paparrizos,Sanjay Krishnan,Aaron J. Elmore,Michael J. Franklin,
連結: http://proceedings.mlr.press/v97/dziedzic19a.html
[174]. Imitating Latent Policies from Observation.
作者: Ashley D. Edwards,Himanshu Sahni,Yannick Schroecker,Charles L. Isbell Jr.,
連結: http://proceedings.mlr.press/v97/edwards19a.html
[175]. Semi-Cyclic Stochastic Gradient Descent.
作者: Hubert Eichner,Tomer Koren,Brendan McMahan,Nathan Srebro,Kunal Talwar,
連結: http://proceedings.mlr.press/v97/eichner19a.html
[176]. GDPP: Learning Diverse Generations using Determinantal Point Processes.
作者: Mohamed Elfeki,Camille Couprie,Morgane Rivière,Mohamed Elhoseiny,
連結: http://proceedings.mlr.press/v97/elfeki19a.html
[177]. Sequential Facility Location: Approximate Submodularity and Greedy Algorithm.
作者: Ehsan Elhamifar,
連結: http://proceedings.mlr.press/v97/elhamifar19a.html
[178]. Improved Convergence for $ell_1$ and $ell_∞$ Regression via Iteratively Reweighted Least Squares.
作者: Alina Ene,Adrian Vladu,
連結: http://proceedings.mlr.press/v97/ene19a.html
[179]. Exploring the Landscape of Spatial Robustness.
作者: Logan Engstrom,Brandon Tran,Dimitris Tsipras,Ludwig Schmidt,Aleksander Madry,
連結: http://proceedings.mlr.press/v97/engstrom19a.html
[180]. Cross-Domain 3D Equivariant Image Embeddings.
作者: Carlos Esteves,Avneesh Sud,Zhengyi Luo,Kostas Daniilidis,Ameesh Makadia,
連結: http://proceedings.mlr.press/v97/esteves19a.html
[181]. On the Connection Between Adversarial Robustness and Saliency Map Interpretability.
作者: Christian Etmann,Sebastian Lunz,Peter Maass,Carola Schönlieb,
連結: http://proceedings.mlr.press/v97/etmann19a.html
[182]. Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity.
作者: Matthew Fahrbach,Vahab S. Mirrokni,Morteza Zadimoghaddam,
連結: http://proceedings.mlr.press/v97/fahrbach19a.html
[183]. Multi-Frequency Vector Diffusion Maps.
作者: Yifeng Fan,Zhizhen Zhao,
連結: http://proceedings.mlr.press/v97/fan19a.html
[184]. Stable-Predictive Optimistic Counterfactual Regret Minimization.
作者: Gabriele Farina,Christian Kroer,Noam Brown,Tuomas Sandholm,
連結: http://proceedings.mlr.press/v97/farina19a.html
[185]. Regret Circuits: Composability of Regret Minimizers.
作者: Gabriele Farina,Christian Kroer,Tuomas Sandholm,
連結: http://proceedings.mlr.press/v97/farina19b.html
[186]. Dead-ends and Secure Exploration in Reinforcement Learning.
作者: Mehdi Fatemi,Shikhar Sharma,Harm van Seijen,Samira Ebrahimi Kahou,
連結: http://proceedings.mlr.press/v97/fatemi19a.html
[187]. Invariant-Equivariant Representation Learning for Multi-Class Data.
作者: Ilya Feige,
連結: http://proceedings.mlr.press/v97/feige19a.html
[188]. The advantages of multiple classes for reducing overfitting from test set reuse.
作者: Vitaly Feldman,Roy Frostig,Moritz Hardt,
連結: http://proceedings.mlr.press/v97/feldman19a.html
[189]. Decentralized Exploration in Multi-Armed Bandits.
作者: Raphaël Féraud,Réda Alami,Romain Laroche,
連結: http://proceedings.mlr.press/v97/feraud19a.html
[190]. Almost surely constrained convex optimization.
作者: Olivier Fercoq,Ahmet Alacaoglu,Ion Necoara,Volkan Cevher,
連結: http://proceedings.mlr.press/v97/fercoq19a.html
[191]. Online Meta-Learning.
作者: Chelsea Finn,Aravind Rajeswaran,Sham M. Kakade,Sergey Levine,
連結: http://proceedings.mlr.press/v97/finn19a.html
[192]. DL2: Training and Querying Neural Networks with Logic.
作者: Marc Fischer,Mislav Balunovic,Dana Drachsler-Cohen,Timon Gehr,Ce Zhang,Martin T. Vechev,
連結: http://proceedings.mlr.press/v97/fischer19a.html
[193]. Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning.
作者: Jakob N. Foerster,H. Francis Song,Edward Hughes,Neil Burch,Iain Dunning,Shimon Whiteson,Matthew Botvinick,Michael Bowling,
連結: http://proceedings.mlr.press/v97/foerster19a.html
[194]. Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap.
作者: Edwin Fong,Simon Lyddon,Chris C. Holmes,
連結: http://proceedings.mlr.press/v97/fong19a.html
[195]. On discriminative learning of prediction uncertainty.
作者: Vojtech Franc,Daniel Prusa,
連結: http://proceedings.mlr.press/v97/franc19a.html
[196]. Learning Discrete Structures for Graph Neural Networks.
作者: Luca Franceschi,Mathias Niepert,Massimiliano Pontil,Xiao He,
連結: http://proceedings.mlr.press/v97/franceschi19a.html
[197]. Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN.
作者: Dror Freirich,Tzahi Shimkin,Ron Meir,Aviv Tamar,
連結: http://proceedings.mlr.press/v97/freirich19a.html
[198]. Approximating Orthogonal Matrices with Effective Givens Factorization.
作者: Thomas Frerix,Joan Bruna,
連結: http://proceedings.mlr.press/v97/frerix19a.html
[199]. Fast and Flexible Inference of Joint Distributions from their Marginals.
作者: Charlie Frogner,Tomaso A. Poggio,
連結: http://proceedings.mlr.press/v97/frogner19a.html
[200]. Analyzing and Improving Representations with the Soft Nearest Neighbor Loss.
作者: Nicholas Frosst,Nicolas Papernot,Geoffrey E. Hinton,
連結: http://proceedings.mlr.press/v97/frosst19a.html
[201]. Diagnosing Bottlenecks in Deep Q-learning Algorithms.
作者: Justin Fu,Aviral Kumar,Matthew Soh,Sergey Levine,
連結: http://proceedings.mlr.press/v97/fu19a.html
[202]. MetricGAN: Generative Adversarial Networks based Black-box Metric Scores Optimization for Speech Enhancement.
作者: Szu-Wei Fu,Chien-Feng Liao,Yu Tsao,Shou-De Lin,
連結: http://proceedings.mlr.press/v97/fu19b.html
[203]. Beyond Adaptive Submodularity: Approximation Guarantees of Greedy Policy with Adaptive Submodularity Ratio.
作者: Kaito Fujii,Shinsaku Sakaue,
連結: http://proceedings.mlr.press/v97/fujii19a.html
[204]. Off-Policy Deep Reinforcement Learning without Exploration.
作者: Scott Fujimoto,David Meger,Doina Precup,
連結: http://proceedings.mlr.press/v97/fujimoto19a.html
[205]. Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation.
作者: Shani Gamrian,Yoav Goldberg,
連結: http://proceedings.mlr.press/v97/gamrian19a.html
[206]. Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities.
作者: Octavian Ganea,Sylvain Gelly,Gary Bécigneul,Aliaksei Severyn,
連結: http://proceedings.mlr.press/v97/ganea19a.html
[207]. Graph U-Nets.
作者: Hongyang Gao,Shuiwang Ji,
連結: http://proceedings.mlr.press/v97/gao19a.html
[208]. Deep Generative Learning via Variational Gradient Flow.
作者: Yuan Gao,Yuling Jiao,Yang Wang,Yao Wang,Can Yang,Shunkang Zhang,
連結: http://proceedings.mlr.press/v97/gao19b.html
[209]. Rate Distortion For Model Compression: From Theory To Practice.
作者: Weihao Gao,Yu-Han Liu,Chong Wang,Sewoong Oh,
連結: http://proceedings.mlr.press/v97/gao19c.html
[210]. Demystifying Dropout.
作者: Hongchang Gao,Jian Pei,Heng Huang,
連結: http://proceedings.mlr.press/v97/gao19d.html
[211]. Geometric Scattering for Graph Data Analysis.
作者: Feng Gao,Guy Wolf,Matthew J. Hirn,
連結: http://proceedings.mlr.press/v97/gao19e.html
[212]. Multi-Frequency Phase Synchronization.
作者: Tingran Gao,Zhizhen Zhao,
連結: http://proceedings.mlr.press/v97/gao19f.html
[213]. Optimal Mini-Batch and Step Sizes for SAGA.
作者: Nidham Gazagnadou,Robert M. Gower,Joseph Salmon,
連結: http://proceedings.mlr.press/v97/gazagnadou19a.html
[214]. SelectiveNet: A Deep Neural Network with an Integrated Reject Option.
作者: Yonatan Geifman,Ran El-Yaniv,
連結: http://proceedings.mlr.press/v97/geifman19a.html
[215]. A Theory of Regularized Markov Decision Processes.
作者: Matthieu Geist,Bruno Scherrer,Olivier Pietquin,
連結: http://proceedings.mlr.press/v97/geist19a.html
[216]. DeepMDP: Learning Continuous Latent Space Models for Representation Learning.
作者: Carles Gelada,Saurabh Kumar,Jacob Buckman,Ofir Nachum,Marc G. Bellemare,
連結: http://proceedings.mlr.press/v97/gelada19a.html
[217]. Partially Linear Additive Gaussian Graphical Models.
作者: Sinong Geng,Minhao Yan,Mladen Kolar,Sanmi Koyejo,
連結: http://proceedings.mlr.press/v97/geng19a.html
[218]. Learning and Data Selection in Big Datasets.
作者: Hossein Shokri Ghadikolaei,Hadi G. Ghauch,Carlo Fischione,Mikael Skoglund,
連結: http://proceedings.mlr.press/v97/ghadikolaei19a.html
[219]. Improved Parallel Algorithms for Density-Based Network Clustering.
作者: Mohsen Ghaffari,Silvio Lattanzi,Slobodan Mitrovic,
連結: http://proceedings.mlr.press/v97/ghaffari19a.html
[220]. Recursive Sketches for Modular Deep Learning.
作者: Badih Ghazi,Rina Panigrahy,Joshua R. Wang,
連結: http://proceedings.mlr.press/v97/ghazi19a.html
[221]. An Instability in Variational Inference for Topic Models.
作者: Behrooz Ghorbani,Hamid Javadi,Andrea Montanari,
連結: http://proceedings.mlr.press/v97/ghorbani19a.html
[222]. An Investigation into Neural Net Optimization via Hessian Eigenvalue Density.
作者: Behrooz Ghorbani,Shankar Krishnan,Ying Xiao,
連結: http://proceedings.mlr.press/v97/ghorbani19b.html
[223]. Data Shapley: Equitable Valuation of Data for Machine Learning.
作者: Amirata Ghorbani,James Y. Zou,
連結: http://proceedings.mlr.press/v97/ghorbani19c.html
[224]. Efficient Dictionary Learning with Gradient Descent.
作者: Dar Gilboa,Sam Buchanan,John Wright,
連結: http://proceedings.mlr.press/v97/gilboa19a.html
[225]. A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes.
作者: Jennifer Gillenwater,Alex Kulesza,Zelda Mariet,Sergei Vassilvitskii,
連結: http://proceedings.mlr.press/v97/gillenwater19a.html
[226]. Learning to Groove with Inverse Sequence Transformations.
作者: Jon Gillick,Adam Roberts,Jesse H. Engel,Douglas Eck,David Bamman,
連結: http://proceedings.mlr.press/v97/gillick19a.html
[227]. Adversarial Examples Are a Natural Consequence of Test Error in Noise.
作者: Justin Gilmer,Nicolas Ford,Nicholas Carlini,Ekin D. Cubuk,
連結: http://proceedings.mlr.press/v97/gilmer19a.html
[228]. Discovering Conditionally Salient Features with Statistical Guarantees.
作者: Jaime Roquero Gimenez,James Y. Zou,
連結: http://proceedings.mlr.press/v97/gimenez19a.html
[229]. Estimating Information Flow in Deep Neural Networks.
作者: Ziv Goldfeld,Ewout van den Berg,Kristjan H. Greenewald,Igor Melnyk,Nam Nguyen,Brian Kingsbury,Yury Polyanskiy,
連結: http://proceedings.mlr.press/v97/goldfeld19a.html
[230]. Amortized Monte Carlo Integration.
作者: Adam Golinski,Frank Wood,Tom Rainforth,
連結: http://proceedings.mlr.press/v97/golinski19a.html
[231]. Online Algorithms for Rent-Or-Buy with Expert Advice.
作者: Sreenivas Gollapudi,Debmalya Panigrahi,
連結: http://proceedings.mlr.press/v97/gollapudi19a.html
[232]. The information-theoretic value of unlabeled data in semi-supervised learning.
作者: Alexander Golovnev,Dávid Pál,Balázs Szörényi,
連結: http://proceedings.mlr.press/v97/golovnev19a.html
[233]. Efficient Training of BERT by Progressively Stacking.
作者: Linyuan Gong,Di He,Zhuohan Li,Tao Qin,Liwei Wang,Tie-Yan Liu,
連結: http://proceedings.mlr.press/v97/gong19a.html
[234]. Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization.
作者: ChengYue Gong,Jian Peng,Qiang Liu,
連結: http://proceedings.mlr.press/v97/gong19b.html
[235]. Obtaining Fairness using Optimal Transport Theory.
作者: Paula Gordaliza,Eustasio del Barrio,Fabrice Gamboa,Jean-Michel Loubes,
連結: http://proceedings.mlr.press/v97/gordaliza19a.html
[236]. Combining parametric and nonparametric models for off-policy evaluation.
作者: Omer Gottesman,Yao Liu,Scott Sussex,Emma Brunskill,Finale Doshi-Velez,
連結: http://proceedings.mlr.press/v97/gottesman19a.html
[237]. Counterfactual Visual Explanations.
作者: Yash Goyal,Ziyan Wu,Jan Ernst,Dhruv Batra,Devi Parikh,Stefan Lee,
連結: http://proceedings.mlr.press/v97/goyal19a.html
[238]. Adaptive Sensor Placement for Continuous Spaces.
作者: James A. Grant,Alexis Boukouvalas,Ryan-Rhys Griffiths,David S. Leslie,Sattar Vakili,Enrique Munoz de Cote,
連結: http://proceedings.mlr.press/v97/grant19a.html
[239]. A Statistical Investigation of Long Memory in Language and Music.
作者: Alexander Greaves-Tunnell,Zaïd Harchaoui,
連結: http://proceedings.mlr.press/v97/greaves-tunnell19a.html
[240]. Automatic Posterior Transformation for Likelihood-Free Inference.
作者: David S. Greenberg,Marcel Nonnenmacher,Jakob H. Macke,
連結: http://proceedings.mlr.press/v97/greenberg19a.html
[241]. Learning to Optimize Multigrid PDE Solvers.
作者: Daniel Greenfeld,Meirav Galun,Ronen Basri,Irad Yavneh,Ron Kimmel,
連結: http://proceedings.mlr.press/v97/greenfeld19a.html
[242]. Multi-Object Representation Learning with Iterative Variational Inference.
作者: Klaus Greff,Raphaël Lopez Kaufman,Rishabh Kabra,Nick Watters,Christopher Burgess,Daniel Zoran,Loic Matthey,Matthew Botvinick,Alexander Lerchner,
連結: http://proceedings.mlr.press/v97/greff19a.html
[243]. Graphite: Iterative Generative Modeling of Graphs.
作者: Aditya Grover,Aaron Zweig,Stefano Ermon,
連結: http://proceedings.mlr.press/v97/grover19a.html
[244]. Fast Algorithm for Generalized Multinomial Models with Ranking Data.
作者: Jiaqi Gu,Guosheng Yin,
連結: http://proceedings.mlr.press/v97/gu19a.html
[245]. Towards a Deep and Unified Understanding of Deep Neural Models in NLP.
作者: Chaoyu Guan,Xiting Wang,Quanshi Zhang,Runjin Chen,Di He,Xing Xie,
連結: http://proceedings.mlr.press/v97/guan19a.html
[246]. An Investigation of Model-Free Planning.
作者: Arthur Guez,Mehdi Mirza,Karol Gregor,Rishabh Kabra,Sébastien Racanière,Theophane Weber,David Raposo,Adam Santoro,Laurent Orseau,Tom Eccles,Greg Wayne,David Silver,Timothy P. Lillicrap,
連結: http://proceedings.mlr.press/v97/guez19a.html
[247]. Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops.
作者: Limor Gultchin,Genevieve Patterson,Nancy Baym,Nathaniel Swinger,Adam Kalai,
連結: http://proceedings.mlr.press/v97/gultchin19a.html
[248]. Simple Black-box Adversarial Attacks.
作者: Chuan Guo,Jacob R. Gardner,Yurong You,Andrew Gordon Wilson,Kilian Q. Weinberger,
連結: http://proceedings.mlr.press/v97/guo19a.html
[249]. Exploring interpretable LSTM neural networks over multi-variable data.
作者: Tian Guo,Tao Lin,Nino Antulov-Fantulin,
連結: http://proceedings.mlr.press/v97/guo19b.html
[250]. Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs.
作者: Lingbing Guo,Zequn Sun,Wei Hu,
連結: http://proceedings.mlr.press/v97/guo19c.html
[251]. Memory-Optimal Direct Convolutions for Maximizing Classification Accuracy in Embedded Applications.
作者: Albert Gural,Boris Murmann,
連結: http://proceedings.mlr.press/v97/gural19a.html
[252]. IMEXnet A Forward Stable Deep Neural Network.
作者: Eldad Haber,Keegan Lensink,Eran Treister,Lars Ruthotto,
連結: http://proceedings.mlr.press/v97/haber19a.html
[253]. On The Power of Curriculum Learning in Training Deep Networks.
作者: Guy Hacohen,Daphna Weinshall,
連結: http://proceedings.mlr.press/v97/hacohen19a.html
[254]. Trading Redundancy for Communication: Speeding up Distributed SGD for Non-convex Optimization.
作者: Farzin Haddadpour,Mohammad Mahdi Kamani,Mehrdad Mahdavi,Viveck R. Cadambe,
連結: http://proceedings.mlr.press/v97/haddadpour19a.html
[255]. Learning Latent Dynamics for Planning from Pixels.
作者: Danijar Hafner,Timothy P. Lillicrap,Ian Fischer,Ruben Villegas,David Ha,Honglak Lee,James Davidson,
連結: http://proceedings.mlr.press/v97/hafner19a.html
[256]. Neural Separation of Observed and Unobserved Distributions.
作者: Tavi Halperin,Ariel Ephrat,Yedid Hoshen,
連結: http://proceedings.mlr.press/v97/halperin19a.html
[257]. Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI.
作者: Lei Han,Peng Sun,Yali Du,Jiechao Xiong,Qing Wang,Xinghai Sun,Han Liu,Tong Zhang,
連結: http://proceedings.mlr.press/v97/han19a.html
[258]. Dimension-Wise Importance Sampling Weight Clipping for Sample-Efficient Reinforcement Learning.
作者: Seungyul Han,Youngchul Sung,
連結: http://proceedings.mlr.press/v97/han19b.html
[259]. Complexity of Linear Regions in Deep Networks.
作者: Boris Hanin,David Rolnick,
連結: http://proceedings.mlr.press/v97/hanin19a.html
[260]. Importance Sampling Policy Evaluation with an Estimated Behavior Policy.
作者: Josiah Hanna,Scott Niekum,Peter Stone,
連結: http://proceedings.mlr.press/v97/hanna19a.html
[261]. Doubly-Competitive Distribution Estimation.
作者: Yi Hao,Alon Orlitsky,
連結: http://proceedings.mlr.press/v97/hao19a.html
[262]. Random Shuffling Beats SGD after Finite Epochs.
作者: Jeff Z. HaoChen,Suvrit Sra,
連結: http://proceedings.mlr.press/v97/haochen19a.html
[263]. Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications.
作者: Chris Harshaw,Moran Feldman,Justin Ward,Amin Karbasi,
連結: http://proceedings.mlr.press/v97/harshaw19a.html
[264]. Per-Decision Option Discounting.
作者: Anna Harutyunyan,Peter Vrancx,Philippe Hamel,Ann Nowé,Doina Precup,
連結: http://proceedings.mlr.press/v97/harutyunyan19a.html
[265]. Submodular Observation Selection and Information Gathering for Quadratic Models.
作者: Abolfazl Hashemi,Mahsa Ghasemi,Haris Vikalo,Ufuk Topcu,
連結: http://proceedings.mlr.press/v97/hashemi19a.html
[266]. Understanding and Controlling Memory in Recurrent Neural Networks.
作者: Doron Haviv,Alexander Rivkind,Omri Barak,
連結: http://proceedings.mlr.press/v97/haviv19a.html
[267]. On the Impact of the Activation function on Deep Neural Networks Training.
作者: Soufiane Hayou,Arnaud Doucet,Judith Rousseau,
連結: http://proceedings.mlr.press/v97/hayou19a.html
[268]. Provably Efficient Maximum Entropy Exploration.
作者: Elad Hazan,Sham M. Kakade,Karan Singh,Abby Van Soest,
連結: http://proceedings.mlr.press/v97/hazan19a.html
[269]. On the Long-term Impact of Algorithmic Decision Policies: Effort Unfairness and Feature Segregation through Social Learning.
作者: Hoda Heidari,Vedant Nanda,Krishna P. Gummadi,
連結: http://proceedings.mlr.press/v97/heidari19a.html
[270]. Graph Resistance and Learning from Pairwise Comparisons.
作者: Julien M. Hendrickx,Alexander Olshevsky,Venkatesh Saligrama,
連結: http://proceedings.mlr.press/v97/hendrickx19a.html
[271]. Using Pre-Training Can Improve Model Robustness and Uncertainty.
作者: Dan Hendrycks,Kimin Lee,Mantas Mazeika,
連結: http://proceedings.mlr.press/v97/hendrycks19a.html
[272]. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design.
作者: Jonathan Ho,Xi Chen,Aravind Srinivas,Yan Duan,Pieter Abbeel,
連結: http://proceedings.mlr.press/v97/ho19a.html
[273]. Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules.
作者: Daniel Ho,Eric Liang,Xi Chen,Ion Stoica,Pieter Abbeel,
連結: http://proceedings.mlr.press/v97/ho19b.html
[274]. Collective Model Fusion for Multiple Black-Box Experts.
作者: Quang Minh Hoang,Trong Nghia Hoang,Bryan Kian Hsiang Low,Carl Kingsford,
連結: http://proceedings.mlr.press/v97/hoang19a.html
[275]. Connectivity-Optimized Representation Learning via Persistent Homology.
作者: Christoph D. Hofer,Roland Kwitt,Marc Niethammer,Mandar Dixit,
連結: http://proceedings.mlr.press/v97/hofer19a.html
[276]. Better generalization with less data using robust gradient descent.
作者: Matthew J. Holland,Kazushi Ikeda,
連結: http://proceedings.mlr.press/v97/holland19a.html
[277]. Emerging Convolutions for Generative Normalizing Flows.
作者: Emiel Hoogeboom,Rianne van den Berg,Max Welling,
連結: http://proceedings.mlr.press/v97/hoogeboom19a.html
[278]. Nonconvex Variance Reduced Optimization with Arbitrary Sampling.
作者: Samuel Horváth,Peter Richtárik,
連結: http://proceedings.mlr.press/v97/horvath19a.html
[279]. Parameter-Efficient Transfer Learning for NLP.
作者: Neil Houlsby,Andrei Giurgiu,Stanislaw Jastrzebski,Bruna Morrone,Quentin de Laroussilhe,Andrea Gesmundo,Mona Attariyan,Sylvain Gelly,
連結: http://proceedings.mlr.press/v97/houlsby19a.html
[280]. Stay With Me: Lifetime Maximization Through Heteroscedastic Linear Bandits With Reneging.
作者: Ping-Chun Hsieh,Xi Liu,Anirban Bhattacharya,P. R. Kumar,
連結: http://proceedings.mlr.press/v97/hsieh19a.html
[281]. Finding Mixed Nash Equilibria of Generative Adversarial Networks.
作者: Ya-Ping Hsieh,Chen Liu,Volkan Cevher,
連結: http://proceedings.mlr.press/v97/hsieh19b.html
[282]. Classification from Positive, Unlabeled and Biased Negative Data.
作者: Yu-Guan Hsieh,Gang Niu,Masashi Sugiyama,
連結: http://proceedings.mlr.press/v97/hsieh19c.html
[283]. Bayesian Deconditional Kernel Mean Embeddings.
作者: Kelvin Hsu,Fabio Ramos,
連結: http://proceedings.mlr.press/v97/hsu19a.html
[284]. Faster Stochastic Alternating Direction Method of Multipliers for Nonconvex Optimization.
作者: Feihu Huang,Songcan Chen,Heng Huang,
連結: http://proceedings.mlr.press/v97/huang19a.html
[285]. Unsupervised Deep Learning by Neighbourhood Discovery.
作者: Jiabo Huang,Qi Dong,Shaogang Gong,Xiatian Zhu,
連結: http://proceedings.mlr.press/v97/huang19b.html
[286]. Detecting Overlapping and Correlated Communities without Pure Nodes: Identifiability and Algorithm.
作者: Kejun Huang,Xiao Fu,
連結: http://proceedings.mlr.press/v97/huang19c.html
[287]. Hierarchical Importance Weighted Autoencoders.
作者: Chin-Wei Huang,Kris Sankaran,Eeshan Dhekane,Alexandre Lacoste,Aaron C. Courville,
連結: http://proceedings.mlr.press/v97/huang19d.html
[288]. Stable and Fair Classification.
作者: Lingxiao Huang,Nisheeth K. Vishnoi,
連結: http://proceedings.mlr.press/v97/huang19e.html
[289]. Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment.
作者: Chen Huang,Shuangfei Zhai,Walter Talbott,Miguel Ángel Bautista,Shih-Yu Sun,Carlos Guestrin,Joshua M. Susskind,
連結: http://proceedings.mlr.press/v97/huang19f.html
[290]. Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models.
作者: Biwei Huang,Kun Zhang,Mingming Gong,Clark Glymour,
連結: http://proceedings.mlr.press/v97/huang19g.html
[291]. Composing Entropic Policies using Divergence Correction.
作者: Jonathan J. Hunt,André Barreto,Timothy P. Lillicrap,Nicolas Heess,
連結: http://proceedings.mlr.press/v97/hunt19a.html
[292]. HexaGAN: Generative Adversarial Nets for Real World Classification.
作者: Uiwon Hwang,Dahuin Jung,Sungroh Yoon,
連結: http://proceedings.mlr.press/v97/hwang19a.html
[293]. Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models.
作者: Alessandro Davide Ialongo,Mark van der Wilk,James Hensman,Carl Edward Rasmussen,
連結: http://proceedings.mlr.press/v97/ialongo19a.html
[294]. Learning Structured Decision Problems with Unawareness.
作者: Craig Innes,Alex Lascarides,
連結: http://proceedings.mlr.press/v97/innes19a.html
[295]. Phase transition in PCA with missing data: Reduced signal-to-noise ratio, not sample size!
作者: Niels Bruun Ipsen,Lars Kai Hansen,
連結: http://proceedings.mlr.press/v97/ipsen19a.html
[296]. Actor-Attention-Critic for Multi-Agent Reinforcement Learning.
作者: Shariq Iqbal,Fei Sha,
連結: http://proceedings.mlr.press/v97/iqbal19a.html
[297]. Complementary-Label Learning for Arbitrary Losses and Models.
作者: Takashi Ishida,Gang Niu,Aditya Krishna Menon,Masashi Sugiyama,
連結: http://proceedings.mlr.press/v97/ishida19a.html
[298]. Causal Identification under Markov Equivalence: Completeness Results.
作者: Amin Jaber,Jiji Zhang,Elias Bareinboim,
連結: http://proceedings.mlr.press/v97/jaber19a.html
[299]. Learning from a Learner.
作者: Alexis Jacq,Matthieu Geist,Ana Paiva,Olivier Pietquin,
連結: http://proceedings.mlr.press/v97/jacq19a.html
[300]. Differentially Private Fair Learning.
作者: Matthew Jagielski,Michael J. Kearns,Jieming Mao,Alina Oprea,Aaron Roth,Saeed Sharifi-Malvajerdi,Jonathan Ullman,
連結: http://proceedings.mlr.press/v97/jagielski19a.html
[301]. Sum-of-Squares Polynomial Flow.
作者: Priyank Jaini,Kira A. Selby,Yaoliang Yu,
連結: http://proceedings.mlr.press/v97/jaini19a.html
[302]. DBSCAN++: Towards fast and scalable density clustering.
作者: Jennifer Jang,Heinrich Jiang,
連結: http://proceedings.mlr.press/v97/jang19a.html
[303]. Learning What and Where to Transfer.
作者: Yunhun Jang,Hankook Lee,Sung Ju Hwang,Jinwoo Shin,
連結: http://proceedings.mlr.press/v97/jang19b.html
[304]. Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning.
作者: Natasha Jaques,Angeliki Lazaridou,Edward Hughes,Çaglar Gülçehre,Pedro A. Ortega,DJ Strouse,Joel Z. Leibo,Nando de Freitas,
連結: http://proceedings.mlr.press/v97/jaques19a.html
[305]. A Deep Reinforcement Learning Perspective on Internet Congestion Control.
作者: Nathan Jay,Noga H. Rotman,Brighten Godfrey,Michael Schapira,Aviv Tamar,
連結: http://proceedings.mlr.press/v97/jay19a.html
[306]. Graph Neural Network for Music Score Data and Modeling Expressive Piano Performance.
作者: Dasaem Jeong,Taegyun Kwon,Yoojin Kim,Juhan Nam,
連結: http://proceedings.mlr.press/v97/jeong19a.html
[307]. Ladder Capsule Network.
作者: Taewon Jeong,Youngmin Lee,Heeyoung Kim,
連結: http://proceedings.mlr.press/v97/jeong19b.html
[308]. Training CNNs with Selective Allocation of Channels.
作者: Jongheon Jeong,Jinwoo Shin,
連結: http://proceedings.mlr.press/v97/jeong19c.html
[309]. Learning Discrete and Continuous Factors of Data via Alternating Disentanglement.
作者: Yeonwoo Jeong,Hyun Oh Song,
連結: http://proceedings.mlr.press/v97/jeong19d.html
[310]. Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization.
作者: Kaiyi Ji,Zhe Wang,Yi Zhou,Yingbin Liang,
連結: http://proceedings.mlr.press/v97/ji19a.html
[311]. Neural Logic Reinforcement Learning.
作者: Zhengyao Jiang,Shan Luo,
連結: http://proceedings.mlr.press/v97/jiang19a.html
[312]. Finding Options that Minimize Planning Time.
作者: Yuu Jinnai,David Abel,David Ellis Hershkowitz,Michael L. Littman,George Dimitri Konidaris,
連結: http://proceedings.mlr.press/v97/jinnai19a.html
[313]. Discovering Options for Exploration by Minimizing Cover Time.
作者: Yuu Jinnai,Jee Won Park,David Abel,George Dimitri Konidaris,
連結: http://proceedings.mlr.press/v97/jinnai19b.html
[314]. Kernel Mean Matching for Content Addressability of GANs.
作者: Wittawat Jitkrittum,Patsorn Sangkloy,Muhammad Waleed Gondal,Amit Raj,James Hays,Bernhard Schölkopf,
連結: http://proceedings.mlr.press/v97/jitkrittum19a.html
[315]. GOODE: A Gaussian Off-The-Shelf Ordinary Differential Equation Solver.
作者: David John,Vincent Heuveline,Michael Schober,
連結: http://proceedings.mlr.press/v97/john19a.html
[316]. Bilinear Bandits with Low-rank Structure.
作者: Kwang-Sung Jun,Rebecca Willett,Stephen Wright,Robert D. Nowak,
連結: http://proceedings.mlr.press/v97/jun19a.html
[317]. Statistical Foundations of Virtual Democracy.
作者: Anson Kahng,Min Kyung Lee,Ritesh Noothigattu,Ariel D. Procaccia,Christos-Alexandros Psomas,
連結: http://proceedings.mlr.press/v97/kahng19a.html
[318]. Molecular Hypergraph Grammar with Its Application to Molecular Optimization.
作者: Hiroshi Kajino,
連結: http://proceedings.mlr.press/v97/kajino19a.html
[319]. Robust Influence Maximization for Hyperparametric Models.
作者: Dimitris Kalimeris,Gal Kaplun,Yaron Singer,
連結: http://proceedings.mlr.press/v97/kalimeris19a.html
[320]. Classifying Treatment Responders Under Causal Effect Monotonicity.
作者: Nathan Kallus,
連結: http://proceedings.mlr.press/v97/kallus19a.html
[321]. Trainable Decoding of Sets of Sequences for Neural Sequence Models.
作者: Ashwin Kalyan,Peter Anderson,Stefan Lee,Dhruv Batra,
連結: http://proceedings.mlr.press/v97/kalyan19a.html
[322]. Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments.
作者: Kirthevasan Kandasamy,Willie Neiswanger,Reed Zhang,Akshay Krishnamurthy,Jeff Schneider,Barnabás Póczos,
連結: http://proceedings.mlr.press/v97/kandasamy19a.html
[323]. Differentially Private Learning of Geometric Concepts.
作者: Haim Kaplan,Yishay Mansour,Yossi Matias,Uri Stemmer,
連結: http://proceedings.mlr.press/v97/kaplan19a.html
[324]. Policy Consolidation for Continual Reinforcement Learning.
作者: Christos Kaplanis,Murray Shanahan,Claudia Clopath,
連結: http://proceedings.mlr.press/v97/kaplanis19a.html
[325]. Error Feedback Fixes SignSGD and other Gradient Compression Schemes.
作者: Sai Praneeth Karimireddy,Quentin Rebjock,Sebastian U. Stich,Martin Jaggi,
連結: http://proceedings.mlr.press/v97/karimireddy19a.html
[326]. Riemannian adaptive stochastic gradient algorithms on matrix manifolds.
作者: Hiroyuki Kasai,Pratik Jawanpuria,Bamdev Mishra,
連結: http://proceedings.mlr.press/v97/kasai19a.html
[327]. Neural Inverse Knitting: From Images to Manufacturing Instructions.
作者: Alexandre Kaspar,Tae-Hyun Oh,Liane Makatura,Petr Kellnhofer,Wojciech Matusik,
連結: http://proceedings.mlr.press/v97/kaspar19a.html
[328]. Processing Megapixel Images with Deep Attention-Sampling Models.
作者: Angelos Katharopoulos,François Fleuret,
連結: http://proceedings.mlr.press/v97/katharopoulos19a.html
[329]. Robust Estimation of Tree Structured Gaussian Graphical Models.
作者: Ashish Katiyar,Jessica Hoffmann,Constantine Caramanis,
連結: http://proceedings.mlr.press/v97/katiyar19a.html
[330]. Shallow-Deep Networks: Understanding and Mitigating Network Overthinking.
作者: Yigitcan Kaya,Sanghyun Hong,Tudor Dumitras,
連結: http://proceedings.mlr.press/v97/kaya19a.html
[331]. Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity.
作者: Ehsan Kazemi,Marko Mitrovic,Morteza Zadimoghaddam,Silvio Lattanzi,Amin Karbasi,
連結: http://proceedings.mlr.press/v97/kazemi19a.html
[332]. Adaptive Scale-Invariant Online Algorithms for Learning Linear Models.
作者: Michal Kempka,Wojciech Kotlowski,Manfred K. Warmuth,
連結: http://proceedings.mlr.press/v97/kempka19a.html
[333]. CHiVE: Varying Prosody in Speech Synthesis with a Linguistically Driven Dynamic Hierarchical Conditional Variational Network.
作者: Tom Kenter,Vincent Wan,Chun-an Chan,Rob Clark,Jakub Vit,
連結: http://proceedings.mlr.press/v97/kenter19a.html
[334]. Collaborative Evolutionary Reinforcement Learning.
作者: Shauharda Khadka,Somdeb Majumdar,Tarek Nassar,Zach Dwiel,Evren Tumer,Santiago Miret,Yinyin Liu,Kagan Tumer,
連結: http://proceedings.mlr.press/v97/khadka19a.html
[335]. Geometry Aware Convolutional Filters for Omnidirectional Images Representation.
作者: Renata Khasanova,Pascal Frossard,
連結: http://proceedings.mlr.press/v97/khasanova19a.html
[336]. EMI: Exploration with Mutual Information.
作者: Hyoungseok Kim,Jaekyeom Kim,Yeonwoo Jeong,Sergey Levine,Hyun Oh Song,
連結: http://proceedings.mlr.press/v97/kim19a.html
[337]. FloWaveNet : A Generative Flow for Raw Audio.
作者: Sungwon Kim,Sang-gil Lee,Jongyoon Song,Jaehyeon Kim,Sungroh Yoon,
連結: http://proceedings.mlr.press/v97/kim19b.html
[338]. Curiosity-Bottleneck: Exploration By Distilling Task-Specific Novelty.
作者: Youngjin Kim,Wontae Nam,Hyunwoo Kim,Ji-Hoon Kim,Gunhee Kim,
連結: http://proceedings.mlr.press/v97/kim19c.html
[339]. Contextual Multi-armed Bandit Algorithm for Semiparametric Reward Model.
作者: Gi-Soo Kim,Myunghee Cho Paik,
連結: http://proceedings.mlr.press/v97/kim19d.html
[340]. Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Volume Dimension.
作者: Jisu Kim,Jaehyeok Shin,Alessandro Rinaldo,Larry A. Wasserman,
連結: http://proceedings.mlr.press/v97/kim19e.html
[341]. Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables.
作者: Friso H. Kingma,Pieter Abbeel,Jonathan Ho,
連結: http://proceedings.mlr.press/v97/kingma19a.html
[342]. CompILE: Compositional Imitation Learning and Execution.
作者: Thomas Kipf,Yujia Li,Hanjun Dai,Vinícius Flores Zambaldi,Alvaro Sanchez-Gonzalez,Edward Grefenstette,Pushmeet Kohli,Peter W. Battaglia,
連結: http://proceedings.mlr.press/v97/kipf19a.html
[343]. Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces.
作者: Johannes Kirschner,Mojmir Mutny,Nicole Hiller,Rasmus Ischebeck,Andreas Krause,
連結: http://proceedings.mlr.press/v97/kirschner19a.html
[344]. AUCμ: A Performance Metric for Multi-Class Machine Learning Models.
作者: Ross Kleiman,David Page,
連結: http://proceedings.mlr.press/v97/kleiman19a.html
[345]. Fair k-Center Clustering for Data Summarization.
作者: Matthäus Kleindessner,Pranjal Awasthi,Jamie Morgenstern,
連結: http://proceedings.mlr.press/v97/kleindessner19a.html
[346]. Guarantees for Spectral Clustering with Fairness Constraints.
作者: Matthäus Kleindessner,Samira Samadi,Pranjal Awasthi,Jamie Morgenstern,
連結: http://proceedings.mlr.press/v97/kleindessner19b.html
[347]. POPQORN: Quantifying Robustness of Recurrent Neural Networks.
作者: Ching-Yun Ko,Zhaoyang Lyu,Lily Weng,Luca Daniel,Ngai Wong,Dahua Lin,
連結: http://proceedings.mlr.press/v97/ko19a.html
[348]. Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication.
作者: Anastasia Koloskova,Sebastian U. Stich,Martin Jaggi,
連結: http://proceedings.mlr.press/v97/koloskova19a.html
[349]. Robust Learning from Untrusted Sources.
作者: Nikola Konstantinov,Christoph Lampert,
連結: http://proceedings.mlr.press/v97/konstantinov19a.html
[350]. Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement.
作者: Wouter Kool,Herke van Hoof,Max Welling,
連結: http://proceedings.mlr.press/v97/kool19a.html
[351]. LIT: Learned Intermediate Representation Training for Model Compression.
作者: Animesh Koratana,Daniel Kang,Peter Bailis,Matei Zaharia,
連結: http://proceedings.mlr.press/v97/koratana19a.html
[352]. Similarity of Neural Network Representations Revisited.
作者: Simon Kornblith,Mohammad Norouzi,Honglak Lee,Geoffrey E. Hinton,
連結: http://proceedings.mlr.press/v97/kornblith19a.html
[353]. On the Complexity of Approximating Wasserstein Barycenters.
作者: Alexey Kroshnin,Nazarii Tupitsa,Darina Dvinskikh,Pavel E. Dvurechensky,Alexander Gasnikov,Cesar A. Uribe,
連結: http://proceedings.mlr.press/v97/kroshnin19a.html
[354]. Estimate Sequences for Variance-Reduced Stochastic Composite Optimization.
作者: Andrei Kulunchakov,Julien Mairal,
連結: http://proceedings.mlr.press/v97/kulunchakov19a.html
[355]. Faster Algorithms for Binary Matrix Factorization.
作者: Ravi Kumar,Rina Panigrahy,Ali Rahimi,David P. Woodruff,
連結: http://proceedings.mlr.press/v97/kumar19a.html
[356]. Loss Landscapes of Regularized Linear Autoencoders.
作者: Daniel Kunin,Jonathan M. Bloom,Aleksandrina Goeva,Cotton Seed,
連結: http://proceedings.mlr.press/v97/kunin19a.html
[357]. Geometry and Symmetry in Short-and-Sparse Deconvolution.
作者: Han-Wen Kuo,Yenson Lau,Yuqian Zhang,John Wright,
連結: http://proceedings.mlr.press/v97/kuo19a.html
[358]. A Large-Scale Study on Regularization and Normalization in GANs.
作者: Karol Kurach,Mario Lucic,Xiaohua Zhai,Marcin Michalski,Sylvain Gelly,
連結: http://proceedings.mlr.press/v97/kurach19a.html
[359]. Making Decisions that Reduce Discriminatory Impacts.
作者: Matt J. Kusner,Chris Russell,Joshua R. Loftus,Ricardo Silva,
連結: http://proceedings.mlr.press/v97/kusner19a.html
[360]. Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits.
作者: Branislav Kveton,Csaba Szepesvári,Sharan Vaswani,Zheng Wen,Tor Lattimore,Mohammad Ghavamzadeh,
連結: http://proceedings.mlr.press/v97/kveton19a.html
[361]. Characterizing Well-Behaved vs. Pathological Deep Neural Networks.
作者: Antoine Labatie,
連結: http://proceedings.mlr.press/v97/labatie19a.html
[362]. State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations.
作者: Alex Lamb,Jonathan Binas,Anirudh Goyal,Sandeep Subramanian,Ioannis Mitliagkas,Yoshua Bengio,Michael Mozer,
連結: http://proceedings.mlr.press/v97/lamb19a.html
[363]. A Recurrent Neural Cascade-based Model for Continuous-Time Diffusion.
作者: Sylvain Lamprier,
連結: http://proceedings.mlr.press/v97/lamprier19a.html
[364]. Projection onto Minkowski Sums with Application to Constrained Learning.
作者: Joong-Ho Won,Jason Xu,Kenneth Lange,
連結: http://proceedings.mlr.press/v97/lange19a.html
[365]. Safe Policy Improvement with Baseline Bootstrapping.
作者: Romain Laroche,Paul Trichelair,Remi Tachet des Combes,
連結: http://proceedings.mlr.press/v97/laroche19a.html
[366]. A Better k-means++ Algorithm via Local Search.
作者: Silvio Lattanzi,Christian Sohler,
連結: http://proceedings.mlr.press/v97/lattanzi19a.html
[367]. Lorentzian Distance Learning for Hyperbolic Representations.
作者: Marc Teva Law,Renjie Liao,Jake Snell,Richard S. Zemel,
連結: http://proceedings.mlr.press/v97/law19a.html
[368]. DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures.
作者: Andrew R. Lawrence,Carl Henrik Ek,Neill D. F. Campbell,
連結: http://proceedings.mlr.press/v97/lawrence19a.html
[369]. POLITEX: Regret Bounds for Policy Iteration using Expert Prediction.
作者: Yasin Abbasi-Yadkori,Peter L. Bartlett,Kush Bhatia,Nevena Lazic,Csaba Szepesvári,Gellért Weisz,
連結: http://proceedings.mlr.press/v97/lazic19a.html
[370]. Batch Policy Learning under Constraints.
作者: Hoang Minh Le,Cameron Voloshin,Yisong Yue,
連結: http://proceedings.mlr.press/v97/le19a.html
[371]. Target-Based Temporal-Difference Learning.
作者: Donghwan Lee,Niao He,
連結: http://proceedings.mlr.press/v97/lee19a.html
[372]. Functional Transparency for Structured Data: a Game-Theoretic Approach.
作者: Guang-He Lee,Wengong Jin,David Alvarez-Melis,Tommi S. Jaakkola,
連結: http://proceedings.mlr.press/v97/lee19b.html
[373]. Self-Attention Graph Pooling.
作者: Junhyun Lee,Inyeop Lee,Jaewoo Kang,
連結: http://proceedings.mlr.press/v97/lee19c.html
[374]. Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks.
作者: Juho Lee,Yoonho Lee,Jungtaek Kim,Adam R. Kosiorek,Seungjin Choi,Yee Whye Teh,
連結: http://proceedings.mlr.press/v97/lee19d.html
[375]. First-Order Algorithms Converge Faster than $O(1/k)$ on Convex Problems.
作者: Ching-pei Lee,Stephen J. Wright,
連結: http://proceedings.mlr.press/v97/lee19e.html
[376]. Robust Inference via Generative Classifiers for Handling Noisy Labels.
作者: Kimin Lee,Sukmin Yun,Kibok Lee,Honglak Lee,Bo Li,Jinwoo Shin,
連結: http://proceedings.mlr.press/v97/lee19f.html
[377]. Sublinear Time Nearest Neighbor Search over Generalized Weighted Space.
作者: Yifan Lei,Qiang Huang,Mohan S. Kankanhalli,Anthony K. H. Tung,
連結: http://proceedings.mlr.press/v97/lei19a.html
[378]. MONK Outlier-Robust Mean Embedding Estimation by Median-of-Means.
作者: Matthieu Lerasle,Zoltán Szabó,Timothée Mathieu,Guillaume Lecué,
連結: http://proceedings.mlr.press/v97/lerasle19a.html
[379]. Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group.
作者: Mario Lezcano Casado,David Martínez-Rubio,
連結: http://proceedings.mlr.press/v97/lezcano-casado19a.html
[380]. Are Generative Classifiers More Robust to Adversarial Attacks?
作者: Yingzhen Li,John Bradshaw,Yash Sharma,
連結: http://proceedings.mlr.press/v97/li19a.html
[381]. Sublinear quantum algorithms for training linear and kernel-based classifiers.
作者: Tongyang Li,Shouvanik Chakrabarti,Xiaodi Wu,
連結: http://proceedings.mlr.press/v97/li19b.html
[382]. LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning.
作者: Huai-Yu Li,Weiming Dong,Xing Mei,Chongyang Ma,Feiyue Huang,Bao-Gang Hu,
連結: http://proceedings.mlr.press/v97/li19c.html
[383]. Graph Matching Networks for Learning the Similarity of Graph Structured Objects.
作者: Yujia Li,Chenjie Gu,Thomas Dullien,Oriol Vinyals,Pushmeet Kohli,
連結: http://proceedings.mlr.press/v97/li19d.html
[384]. Area Attention.
作者: Yang Li,Lukasz Kaiser,Samy Bengio,Si Si,
連結: http://proceedings.mlr.press/v97/li19e.html
[385]. Online Learning to Rank with Features.
作者: Shuai Li,Tor Lattimore,Csaba Szepesvári,
連結: http://proceedings.mlr.press/v97/li19f.html
[386]. NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks.
作者: Yandong Li,Lijun Li,Liqiang Wang,Tong Zhang,Boqing Gong,
連結: http://proceedings.mlr.press/v97/li19g.html
[387]. Bayesian Joint Spike-and-Slab Graphical Lasso.
作者: Zehang Richard Li,Tyler H. McCormick,Samuel J. Clark,
連結: http://proceedings.mlr.press/v97/li19h.html
[388]. Exploiting Worker Correlation for Label Aggregation in Crowdsourcing.
作者: Yuan Li,Benjamin I. P. Rubinstein,Trevor Cohn,
連結: http://proceedings.mlr.press/v97/li19i.html
[389]. Adversarial camera stickers: A physical camera-based attack on deep learning systems.
作者: Juncheng Li,Frank R. Schmidt,J. Zico Kolter,
連結: http://proceedings.mlr.press/v97/li19j.html
[390]. Towards a Unified Analysis of Random Fourier Features.
作者: Zhu Li,Jean-Francois Ton,Dino Oglic,Dino Sejdinovic,
連結: http://proceedings.mlr.press/v97/li19k.html
[391]. Feature-Critic Networks for Heterogeneous Domain Generalization.
作者: Yiying Li,Yongxin Yang,Wei Zhou,Timothy M. Hospedales,
連結: http://proceedings.mlr.press/v97/li19l.html
[392]. Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting.
作者: Xilai Li,Yingbo Zhou,Tianfu Wu,Richard Socher,Caiming Xiong,
連結: http://proceedings.mlr.press/v97/li19m.html
[393]. Alternating Minimizations Converge to Second-Order Optimal Solutions.
作者: Qiuwei Li,Zhihui Zhu,Gongguo Tang,
連結: http://proceedings.mlr.press/v97/li19n.html
[394]. Cautious Regret Minimization: Online Optimization with Long-Term Budget Constraints.
作者: Nikolaos Liakopoulos,Apostolos Destounis,Georgios S. Paschos,Thrasyvoulos Spyropoulos,Panayotis Mertikopoulos,
連結: http://proceedings.mlr.press/v97/liakopoulos19a.html
[395]. Regularization in directable environments with application to Tetris.
作者: Jan Malte Lichtenberg,Özgür Simsek,
連結: http://proceedings.mlr.press/v97/lichtenberg19a.html
[396]. Inference and Sampling of $K_33$-free Ising Models.
作者: Valerii Likhosherstov,Yury Maximov,Misha Chertkov,
連結: http://proceedings.mlr.press/v97/likhosherstov19a.html
[397]. Kernel-Based Reinforcement Learning in Robust Markov Decision Processes.
作者: Shiau Hong Lim,Arnaud Autef,
連結: http://proceedings.mlr.press/v97/lim19a.html
[398]. On Efficient Optimal Transport: An Analysis of Greedy and Accelerated Mirror Descent Algorithms.
作者: Tianyi Lin,Nhat Ho,Michael I. Jordan,
連結: http://proceedings.mlr.press/v97/lin19a.html
[399]. Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations.
作者: Wu Lin,Mohammad Emtiyaz Khan,Mark Schmidt,
連結: http://proceedings.mlr.press/v97/lin19b.html
[400]. Acceleration of SVRG and Katyusha X by Inexact Preconditioning.
作者: Yanli Liu,Fei Feng,Wotao Yin,
連結: http://proceedings.mlr.press/v97/liu19a.html
[401]. Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers.
作者: Hong Liu,Mingsheng Long,Jianmin Wang,Michael I. Jordan,
連結: http://proceedings.mlr.press/v97/liu19b.html
[402]. Rao-Blackwellized Stochastic Gradients for Discrete Distributions.
作者: Runjing Liu,Jeffrey Regier,Nilesh Tripuraneni,Michael I. Jordan,Jon D. McAuliffe,
連結: http://proceedings.mlr.press/v97/liu19c.html
[403]. Sparse Extreme Multi-label Learning with Oracle Property.
作者: Weiwei Liu,Xiaobo Shen,
連結: http://proceedings.mlr.press/v97/liu19d.html
[404]. Data Poisoning Attacks on Stochastic Bandits.
作者: Fang Liu,Ness B. Shroff,
連結: http://proceedings.mlr.press/v97/liu19e.html
[405]. The Implicit Fairness Criterion of Unconstrained Learning.
作者: Lydia T. Liu,Max Simchowitz,Moritz Hardt,
連結: http://proceedings.mlr.press/v97/liu19f.html
[406]. Taming MAML: Efficient unbiased meta-reinforcement learning.
作者: Hao Liu,Richard Socher,Caiming Xiong,
連結: http://proceedings.mlr.press/v97/liu19g.html
[407]. On Certifying Non-Uniform Bounds against Adversarial Attacks.
作者: Chen Liu,Ryota Tomioka,Volkan Cevher,
連結: http://proceedings.mlr.press/v97/liu19h.html
[408]. Understanding and Accelerating Particle-Based Variational Inference.
作者: Chang Liu,Jingwei Zhuo,Pengyu Cheng,Ruiyi Zhang,Jun Zhu,
連結: http://proceedings.mlr.press/v97/liu19i.html
[409]. Understanding MCMC Dynamics as Flows on the Wasserstein Space.
作者: Chang Liu,Jingwei Zhuo,Jun Zhu,
連結: http://proceedings.mlr.press/v97/liu19j.html
[410]. Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions.
作者: Antoine Liutkus,Umut Simsekli,Szymon Majewski,Alain Durmus,Fabian-Robert Stöter,
連結: http://proceedings.mlr.press/v97/liutkus19a.html
[411]. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations.
作者: Francesco Locatello,Stefan Bauer,Mario Lucic,Gunnar Rätsch,Sylvain Gelly,Bernhard Schölkopf,Olivier Bachem,
連結: http://proceedings.mlr.press/v97/locatello19a.html
[412]. Bayesian Counterfactual Risk Minimization.
作者: Ben London,Ted Sandler,
連結: http://proceedings.mlr.press/v97/london19a.html
[413]. PA-GD: On the Convergence of Perturbed Alternating Gradient Descent to Second-Order Stationary Points for Structured Nonconvex Optimization.
作者: Songtao Lu,Mingyi Hong,Zhengdao Wang,
連結: http://proceedings.mlr.press/v97/lu19a.html
[414]. Neurally-Guided Structure Inference.
作者: Sidi Lu,Jiayuan Mao,Joshua B. Tenenbaum,Jiajun Wu,
連結: http://proceedings.mlr.press/v97/lu19b.html
[415]. Optimal Algorithms for Lipschitz Bandits with Heavy-tailed Rewards.
作者: Shiyin Lu,Guanghui Wang,Yao Hu,Lijun Zhang,
連結: http://proceedings.mlr.press/v97/lu19c.html
[416]. CoT: Cooperative Training for Generative Modeling of Discrete Data.
作者: Sidi Lu,Lantao Yu,Siyuan Feng,Yaoming Zhu,Weinan Zhang,
連結: http://proceedings.mlr.press/v97/lu19d.html
[417]. Generalized Approximate Survey Propagation for High-Dimensional Estimation.
作者: Carlo Lucibello,Luca Saglietti,Yue M. Lu,
連結: http://proceedings.mlr.press/v97/lucibello19a.html
[418]. High-Fidelity Image Generation With Fewer Labels.
作者: Mario Lucic,Michael Tschannen,Marvin Ritter,Xiaohua Zhai,Olivier Bachem,Sylvain Gelly,
連結: http://proceedings.mlr.press/v97/lucic19a.html
[419]. Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction.
作者: Giulia Luise,Dimitrios Stamos,Massimiliano Pontil,Carlo Ciliberto,
連結: http://proceedings.mlr.press/v97/luise19a.html
[420]. Differentiable Dynamic Normalization for Learning Deep Representation.
作者: Ping Luo,Zhanglin Peng,Wenqi Shao,Ruimao Zhang,Jiamin Ren,Lingyun Wu,
連結: http://proceedings.mlr.press/v97/luo19a.html
[421]. Disentangled Graph Convolutional Networks.
作者: Jianxin Ma,Peng Cui,Kun Kuang,Xin Wang,Wenwu Zhu,
連結: http://proceedings.mlr.press/v97/ma19a.html
[422]. Variational Implicit Processes.
作者: Chao Ma,Yingzhen Li,José Miguel Hernández-Lobato,
連結: http://proceedings.mlr.press/v97/ma19b.html
[423]. EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE.
作者: Chao Ma,Sebastian Tschiatschek,Konstantina Palla,José Miguel Hernández-Lobato,Sebastian Nowozin,Cheng Zhang,
連結: http://proceedings.mlr.press/v97/ma19c.html
[424]. Bayesian leave-one-out cross-validation for large data.
作者: Måns Magnusson,Michael Riis Andersen,Johan Jonasson,Aki Vehtari,
連結: http://proceedings.mlr.press/v97/magnusson19a.html
[425]. Composable Core-sets for Determinant Maximization: A Simple Near-Optimal Algorithm.
作者: Sepideh Mahabadi,Piotr Indyk,Shayan Oveis Gharan,Alireza Rezaei,
連結: http://proceedings.mlr.press/v97/mahabadi19a.html
[426]. Guided evolutionary strategies: augmenting random search with surrogate gradients.
作者: Niru Maheswaranathan,Luke Metz,George Tucker,Dami Choi,Jascha Sohl-Dickstein,
連結: http://proceedings.mlr.press/v97/maheswaranathan19a.html
[427]. Data Poisoning Attacks in Multi-Party Learning.
作者: Saeed Mahloujifar,Mohammad Mahmoody,Ameer Mohammed,
連結: http://proceedings.mlr.press/v97/mahloujifar19a.html
[428]. Traditional and Heavy Tailed Self Regularization in Neural Network Models.
作者: Michael W. Mahoney,Charles Martin,
連結: http://proceedings.mlr.press/v97/mahoney19a.html
[429]. Curvature-Exploiting Acceleration of Elastic Net Computations.
作者: Vien V. Mai,Mikael Johansson,
連結: http://proceedings.mlr.press/v97/mai19a.html
[430]. Breaking the gridlock in Mixture-of-Experts: Consistent and Efficient Algorithms.
作者: Ashok Vardhan Makkuva,Pramod Viswanath,Sreeram Kannan,Sewoong Oh,
連結: http://proceedings.mlr.press/v97/makkuva19a.html
[431]. Calibrated Model-Based Deep Reinforcement Learning.
作者: Ali Malik,Volodymyr Kuleshov,Jiaming Song,Danny Nemer,Harlan Seymour,Stefano Ermon,
連結: http://proceedings.mlr.press/v97/malik19a.html
[432]. Learning from Delayed Outcomes via Proxies with Applications to Recommender Systems.
作者: Timothy A. Mann,Sven Gowal,András György,Huiyi Hu,Ray Jiang,Balaji Lakshminarayanan,Prav Srinivasan,
連結: http://proceedings.mlr.press/v97/mann19a.html
[433]. Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models.
作者: Stefano Sarao Mannelli,Florent Krzakala,Pierfrancesco Urbani,Lenka Zdeborová,
連結: http://proceedings.mlr.press/v97/mannelli19a.html
[434]. A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs.
作者: Jingkai Mao,Jakob N. Foerster,Tim Rocktäschel,Maruan Al-Shedivat,Gregory Farquhar,Shimon Whiteson,
連結: http://proceedings.mlr.press/v97/mao19a.html
[435]. Adversarial Generation of Time-Frequency Features with application in audio synthesis.
作者: Andrés Marafioti,Nathanaël Perraudin,Nicki Holighaus,Piotr Majdak,
連結: http://proceedings.mlr.press/v97/marafioti19a.html
[436]. On the Universality of Invariant Networks.
作者: Haggai Maron,Ethan Fetaya,Nimrod Segol,Yaron Lipman,
連結: http://proceedings.mlr.press/v97/maron19a.html
[437]. Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models.
作者: Kaspar Märtens,Kieran R. Campbell,Christopher Yau,
連結: http://proceedings.mlr.press/v97/martens19a.html
[438]. Fairness-Aware Learning for Continuous Attributes and Treatments.
作者: Jérémie Mary,Clément Calauzènes,Noureddine El Karoui,
連結: http://proceedings.mlr.press/v97/mary19a.html
[439]. Optimal Minimal Margin Maximization with Boosting.
作者: Alexander Mathiasen,Kasper Green Larsen,Allan Grønlund,
連結: http://proceedings.mlr.press/v97/mathiasen19a.html
[440]. Disentangling Disentanglement in Variational Autoencoders.
作者: Emile Mathieu,Tom Rainforth,N. Siddharth,Yee Whye Teh,
連結: http://proceedings.mlr.press/v97/mathieu19a.html
[441]. MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets.
作者: Pierre-Alexandre Mattei,Jes Frellsen,
連結: http://proceedings.mlr.press/v97/mattei19a.html
[442]. Distributional Reinforcement Learning for Efficient Exploration.
作者: Borislav Mavrin,Hengshuai Yao,Linglong Kong,Kaiwen Wu,Yaoliang Yu,
連結: http://proceedings.mlr.press/v97/mavrin19a.html
[443]. Graphical-model based estimation and inference for differential privacy.
作者: Ryan McKenna,Daniel Sheldon,Gerome Miklau,
連結: http://proceedings.mlr.press/v97/mckenna19a.html
[444]. Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems.
作者: Geoffrey Roeder,Paul K. Grant,Andrew Phillips,Neil Dalchau,Edward Meeds,
連結: http://proceedings.mlr.press/v97/meeds19a.html
[445]. Toward Controlling Discrimination in Online Ad Auctions.
作者: L. Elisa Celis,Anay Mehrotra,Nisheeth K. Vishnoi,
連結: http://proceedings.mlr.press/v97/mehrotra19a.html
[446]. Stochastic Blockmodels meet Graph Neural Networks.
作者: Nikhil Mehta,Lawrence Carin,Piyush Rai,
連結: http://proceedings.mlr.press/v97/mehta19a.html
[447]. Imputing Missing Events in Continuous-Time Event Streams.
作者: Hongyuan Mei,Guanghui Qin,Jason Eisner,
連結: http://proceedings.mlr.press/v97/mei19a.html
[448]. Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization.
作者: Eldad Meller,Alexander Finkelstein,Uri Almog,Mark Grobman,
連結: http://proceedings.mlr.press/v97/meller19a.html
[449]. The Wasserstein Transform.
作者: Facundo Mémoli,Zane T. Smith,Zhengchao Wan,
連結: http://proceedings.mlr.press/v97/memoli19a.html
[450]. Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks.
作者: Charith Mendis,Alex Renda,Saman P. Amarasinghe,Michael Carbin,
連結: http://proceedings.mlr.press/v97/mendis19a.html
[451]. Geometric Losses for Distributional Learning.
作者: Arthur Mensch,Mathieu Blondel,Gabriel Peyré,
連結: http://proceedings.mlr.press/v97/mensch19a.html
[452]. Spectral Clustering of Signed Graphs via Matrix Power Means.
作者: Pedro Mercado,Francesco Tudisco,Matthias Hein,
連結: http://proceedings.mlr.press/v97/mercado19a.html
[453]. Simple Stochastic Gradient Methods for Non-Smooth Non-Convex Regularized Optimization.
作者: Michael R. Metel,Akiko Takeda,
連結: http://proceedings.mlr.press/v97/metel19a.html
[454]. Reinforcement Learning in Configurable Continuous Environments.
作者: Alberto Maria Metelli,Emanuele Ghelfi,Marcello Restelli,
連結: http://proceedings.mlr.press/v97/metelli19a.html
[455]. Understanding and correcting pathologies in the training of learned optimizers.
作者: Luke Metz,Niru Maheswaranathan,Jeremy Nixon,C. Daniel Freeman,Jascha Sohl-Dickstein,
連結: http://proceedings.mlr.press/v97/metz19a.html
[456]. Optimality Implies Kernel Sum Classifiers are Statistically Efficient.
作者: Raphael Arkady Meyer,Jean Honorio,
連結: http://proceedings.mlr.press/v97/meyer19a.html
[457]. On Dropout and Nuclear Norm Regularization.
作者: Poorya Mianjy,Raman Arora,
連結: http://proceedings.mlr.press/v97/mianjy19a.html
[458]. Discriminative Regularization for Latent Variable Models with Applications to Electrocardiography.
作者: Andrew C. Miller,Ziad Obermeyer,John P. Cunningham,Sendhil Mullainathan,
連結: http://proceedings.mlr.press/v97/miller19a.html
[459]. Formal Privacy for Functional Data with Gaussian Perturbations.
作者: Ardalan Mirshani,Matthew Reimherr,Aleksandra B. Slavkovic,
連結: http://proceedings.mlr.press/v97/mirshani19a.html
[460]. Co-manifold learning with missing data.
作者: Gal Mishne,Eric C. Chi,Ronald R. Coifman,
連結: http://proceedings.mlr.press/v97/mishne19a.html
[461]. Agnostic Federated Learning.
作者: Mehryar Mohri,Gary Sivek,Ananda Theertha Suresh,
連結: http://proceedings.mlr.press/v97/mohri19a.html
[462]. Flat Metric Minimization with Applications in Generative Modeling.
作者: Thomas Möllenhoff,Daniel Cremers,
連結: http://proceedings.mlr.press/v97/mollenhoff19a.html
[463]. Parsimonious Black-Box Adversarial Attacks via Efficient Combinatorial Optimization.
作者: Seungyong Moon,Gaon An,Hyun Oh Song,
連結: http://proceedings.mlr.press/v97/moon19a.html
[464]. Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization.
作者: Hesham Mostafa,Xin Wang,
連結: http://proceedings.mlr.press/v97/mostafa19a.html
[465]. A Dynamical Systems Perspective on Nesterov Acceleration.
作者: Michael Muehlebach,Michael I. Jordan,
連結: http://proceedings.mlr.press/v97/muehlebach19a.html
[466]. Relational Pooling for Graph Representations.
作者: Ryan L. Murphy,Balasubramaniam Srinivasan,Vinayak A. Rao,Bruno Ribeiro,
連結: http://proceedings.mlr.press/v97/murphy19a.html
[467]. Learning Optimal Fair Policies.
作者: Razieh Nabi,Daniel Malinsky,Ilya Shpitser,
連結: http://proceedings.mlr.press/v97/nabi19a.html
[468]. Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models.
作者: Mor Shpigel Nacson,Suriya Gunasekar,Jason D. Lee,Nathan Srebro,Daniel Soudry,
連結: http://proceedings.mlr.press/v97/nacson19a.html
[469]. A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning.
作者: Yoshihiro Nagano,Shoichiro Yamaguchi,Yasuhiro Fujita,Masanori Koyama,
連結: http://proceedings.mlr.press/v97/nagano19a.html
[470]. SGD without Replacement: Sharper Rates for General Smooth Convex Functions.
作者: Dheeraj Nagaraj,Prateek Jain,Praneeth Netrapalli,
連結: http://proceedings.mlr.press/v97/nagaraj19a.html
[471]. Dropout as a Structured Shrinkage Prior.
作者: Eric T. Nalisnick,José Miguel Hernández-Lobato,Padhraic Smyth,
連結: http://proceedings.mlr.press/v97/nalisnick19a.html
[472]. Hybrid Models with Deep and Invertible Features.
作者: Eric T. Nalisnick,Akihiro Matsukawa,Yee Whye Teh,Dilan Görür,Balaji Lakshminarayanan,
連結: http://proceedings.mlr.press/v97/nalisnick19b.html
[473]. Learning Context-dependent Label Permutations for Multi-label Classification.
作者: Jinseok Nam,Young-Bum Kim,Eneldo Loza Mencía,Sunghyun Park,Ruhi Sarikaya,Johannes Fürnkranz,
連結: http://proceedings.mlr.press/v97/nam19a.html
[474]. Zero-Shot Knowledge Distillation in Deep Networks.
作者: Gaurav Kumar Nayak,Konda Reddy Mopuri,Vaisakh Shaj,Venkatesh Babu Radhakrishnan,Anirban Chakraborty,
連結: http://proceedings.mlr.press/v97/nayak19a.html
[475]. A Framework for Bayesian Optimization in Embedded Subspaces.
作者: Amin Nayebi,Alexander Munteanu,Matthias Poloczek,
連結: http://proceedings.mlr.press/v97/nayebi19a.html
[476]. Phaseless PCA: Low-Rank Matrix Recovery from Column-wise Phaseless Measurements.
作者: Seyedehsara Nayer,Praneeth Narayanamurthy,Namrata Vaswani,
連結: http://proceedings.mlr.press/v97/nayer19a.html
[477]. Safe Grid Search with Optimal Complexity.
作者: Eugène Ndiaye,Tam Le,Olivier Fercoq,Joseph Salmon,Ichiro Takeuchi,
連結: http://proceedings.mlr.press/v97/ndiaye19a.html
[478]. Learning to bid in revenue-maximizing auctions.
作者: Thomas Nedelec,Noureddine El Karoui,Vianney Perchet,
連結: http://proceedings.mlr.press/v97/nedelec19a.html
[479]. On Connected Sublevel Sets in Deep Learning.
作者: Quynh Nguyen,
連結: http://proceedings.mlr.press/v97/nguyen19a.html
[480]. Anomaly Detection With Multiple-Hypotheses Predictions.
作者: Duc Tam Nguyen,Zhongyu Lou,Michael Klar,Thomas Brox,
連結: http://proceedings.mlr.press/v97/nguyen19b.html
[481]. Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization.
作者: Thanh Huy Nguyen,Umut Simsekli,Gaël Richard,
連結: http://proceedings.mlr.press/v97/nguyen19c.html
[482]. Rotation Invariant Householder Parameterization for Bayesian PCA.
作者: Rajbir-Singh Nirwan,Nils Bertschinger,
連結: http://proceedings.mlr.press/v97/nirwan19a.html
[483]. Lossless or Quantized Boosting with Integer Arithmetic.
作者: Richard Nock,Robert C. Williamson,
連結: http://proceedings.mlr.press/v97/nock19a.html
[484]. Training Neural Networks with Local Error Signals.
作者: Arild Nøkland,Lars Hiller Eidnes,
連結: http://proceedings.mlr.press/v97/nokland19a.html
[485]. Remember and Forget for Experience Replay.
作者: Guido Novati,Petros Koumoutsakos,
連結: http://proceedings.mlr.press/v97/novati19a.html
[486]. Learning to Infer Program Sketches.
作者: Maxwell I. Nye,Luke B. Hewitt,Joshua B. Tenenbaum,Armando Solar-Lezama,
連結: http://proceedings.mlr.press/v97/nye19a.html
[487]. Tensor Variable Elimination for Plated Factor Graphs.
作者: Fritz Obermeyer,Eli Bingham,Martin Jankowiak,Neeraj Pradhan,Justin Chiu,Alexander M. Rush,Noah D. Goodman,
連結: http://proceedings.mlr.press/v97/obermeyer19a.html
[488]. Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models.
作者: Michael Oberst,David A. Sontag,
連結: http://proceedings.mlr.press/v97/oberst19a.html
[489]. Model Function Based Conditional Gradient Method with Armijo-like Line Search.
作者: Peter Ochs,Yura Malitsky,
連結: http://proceedings.mlr.press/v97/ochs19a.html
[490]. TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing.
作者: Augustus Odena,Catherine Olsson,David Andersen,Ian J. Goodfellow,
連結: http://proceedings.mlr.press/v97/odena19a.html
[491]. Scalable Learning in Reproducing Kernel Krein Spaces.
作者: Dino Oglic,Thomas Gärtner,
連結: http://proceedings.mlr.press/v97/oglic19a.html
[492]. Approximation and non-parametric estimation of ResNet-type convolutional neural networks.
作者: Kenta Oono,Taiji Suzuki,
連結: http://proceedings.mlr.press/v97/oono19a.html
[493]. Orthogonal Random Forest for Causal Inference.
作者: Miruna Oprescu,Vasilis Syrgkanis,Zhiwei Steven Wu,
連結: http://proceedings.mlr.press/v97/oprescu19a.html
[494]. Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding.
作者: Muhammad Osama,Dave Zachariah,Thomas B. Schön,
連結: http://proceedings.mlr.press/v97/osama19a.html
[495]. Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
作者: Samet Oymak,Mahdi Soltanolkotabi,
連結: http://proceedings.mlr.press/v97/oymak19a.html
[496]. Multiplicative Weights Updates as a distributed constrained optimization algorithm: Convergence to second-order stationary points almost always.
作者: Ioannis Panageas,Georgios Piliouras,Xiao Wang,
連結: http://proceedings.mlr.press/v97/panageas19a.html
[497]. Improving Adversarial Robustness via Promoting Ensemble Diversity.
作者: Tianyu Pang,Kun Xu,Chao Du,Ning Chen,Jun Zhu,
連結: http://proceedings.mlr.press/v97/pang19a.html
[498]. Nonparametric Bayesian Deep Networks with Local Competition.
作者: Konstantinos P. Panousis,Sotirios Chatzis,Sergios Theodoridis,
連結: http://proceedings.mlr.press/v97/panousis19a.html
[499]. Optimistic Policy Optimization via Multiple Importance Sampling.
作者: Matteo Papini,Alberto Maria Metelli,Lorenzo Lupo,Marcello Restelli,
連結: http://proceedings.mlr.press/v97/papini19a.html
[500]. Deep Residual Output Layers for Neural Language Generation.
作者: Nikolaos Pappas,James Henderson,
連結: http://proceedings.mlr.press/v97/pappas19a.html
[501]. Measurements of Three-Level Hierarchical Structure in the Outliers in the Spectrum of Deepnet Hessians.
作者: Vardan Papyan,
連結: http://proceedings.mlr.press/v97/papyan19a.html
[502]. Generalized Majorization-Minimization.
作者: Sobhan Naderi Parizi,Kun He,Reza Aghajani,Stan Sclaroff,Pedro F. Felzenszwalb,
連結: http://proceedings.mlr.press/v97/parizi19a.html
[503]. Variational Laplace Autoencoders.
作者: Yookoon S. Park,Chris Dongjoo Kim,Gunhee Kim,
連結: http://proceedings.mlr.press/v97/park19a.html
[504]. The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study.
作者: Daniel S. Park,Jascha Sohl-Dickstein,Quoc V. Le,Samuel L. Smith,
連結: http://proceedings.mlr.press/v97/park19b.html
[505]. Spectral Approximate Inference.
作者: Sejun Park,Eunho Yang,Se-Young Yun,Jinwoo Shin,
連結: http://proceedings.mlr.press/v97/park19c.html
[506]. Self-Supervised Exploration via Disagreement.
作者: Deepak Pathak,Dhiraj Gandhi,Abhinav Gupta,
連結: http://proceedings.mlr.press/v97/pathak19a.html
[507]. Subspace Robust Wasserstein Distances.
作者: François-Pierre Paty,Marco Cuturi,
連結: http://proceedings.mlr.press/v97/paty19a.html
[508]. Fingerprint Policy Optimisation for Robust Reinforcement Learning.
作者: Supratik Paul,Michael A. Osborne,Shimon Whiteson,
連結: http://proceedings.mlr.press/v97/paul19a.html
[509]. COMIC: Multi-view Clustering Without Parameter Selection.
作者: Xi Peng,Zhenyu Huang,Jiancheng Lv,Hongyuan Zhu,Joey Tianyi Zhou,
連結: http://proceedings.mlr.press/v97/peng19a.html
[510]. Domain Agnostic Learning with Disentangled Representations.
作者: Xingchao Peng,Zijun Huang,Ximeng Sun,Kate Saenko,
連結: http://proceedings.mlr.press/v97/peng19b.html
[511]. Collaborative Channel Pruning for Deep Networks.
作者: Hanyu Peng,Jiaxiang Wu,Shifeng Chen,Junzhou Huang,
連結: http://proceedings.mlr.press/v97/peng19c.html
[512]. Exploiting structure of uncertainty for efficient matroid semi-bandits.
作者: Pierre Perrault,Vianney Perchet,Michal Valko,
連結: http://proceedings.mlr.press/v97/perrault19a.html
[513]. Cognitive model priors for predicting human decisions.
作者: David D. Bourgin,Joshua C. Peterson,Daniel Reichman,Stuart J. Russell,Thomas L. Griffiths,
連結: http://proceedings.mlr.press/v97/peterson19a.html
[514]. Towards Understanding Knowledge Distillation.
作者: Mary Phuong,Christoph Lampert,
連結: http://proceedings.mlr.press/v97/phuong19a.html
[515]. Temporal Gaussian Mixture Layer for Videos.
作者: A. J. Piergiovanni,Michael S. Ryoo,
連結: http://proceedings.mlr.press/v97/piergiovanni19a.html
[516]. Voronoi Boundary Classification: A High-Dimensional Geometric Approach via Weighted Monte Carlo Integration.
作者: Vladislav Polianskii,Florian T. Pokorny,
連結: http://proceedings.mlr.press/v97/polianskii19a.html
[517]. On Variational Bounds of Mutual Information.
作者: Ben Poole,Sherjil Ozair,Aäron van den Oord,Alex Alemi,George Tucker,
連結: http://proceedings.mlr.press/v97/poole19a.html
[518]. Hiring Under Uncertainty.
作者: Manish Purohit,Sreenivas Gollapudi,Manish Raghavan,
連結: http://proceedings.mlr.press/v97/purohit19a.html
[519]. SAGA with Arbitrary Sampling.
作者: Xun Qian,Zheng Qu,Peter Richtárik,
連結: http://proceedings.mlr.press/v97/qian19a.html
[520]. SGD with Arbitrary Sampling: General Analysis and Improved Rates.
作者: Xun Qian,Peter Richtárik,Robert M. Gower,Alibek Sailanbayev,Nicolas Loizou,Egor Shulgin,
連結: http://proceedings.mlr.press/v97/qian19b.html
[521]. AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss.
作者: Kaizhi Qian,Yang Zhang,Shiyu Chang,Xuesong Yang,Mark Hasegawa-Johnson,
連結: http://proceedings.mlr.press/v97/qian19c.html
[522]. Fault Tolerance in Iterative-Convergent Machine Learning.
作者: Aurick Qiao,Bryon Aragam,Bingjing Zhang,Eric P. Xing,
連結: http://proceedings.mlr.press/v97/qiao19a.html
[523]. Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition.
作者: Yao Qin,Nicholas Carlini,Garrison W. Cottrell,Ian J. Goodfellow,Colin Raffel,
連結: http://proceedings.mlr.press/v97/qin19a.html
[524]. GMNN: Graph Markov Neural Networks.
作者: Meng Qu,Yoshua Bengio,Jian Tang,
連結: http://proceedings.mlr.press/v97/qu19a.html
[525]. Nonlinear Distributional Gradient Temporal-Difference Learning.
作者: Chao Qu,Shie Mannor,Huan Xu,
連結: http://proceedings.mlr.press/v97/qu19b.html
[526]. Learning to Collaborate in Markov Decision Processes.
作者: Goran Radanovic,Rati Devidze,David C. Parkes,Adish Singla,
連結: http://proceedings.mlr.press/v97/radanovic19a.html
[527]. Meta-Learning Neural Bloom Filters.
作者: Jack W. Rae,Sergey Bartunov,Timothy P. Lillicrap,
連結: http://proceedings.mlr.press/v97/rae19a.html
[528]. Direct Uncertainty Prediction for Medical Second Opinions.
作者: Maithra Raghu,Katy Blumer,Rory Sayres,Ziad Obermeyer,Robert D. Kleinberg,Sendhil Mullainathan,Jon M. Kleinberg,
連結: http://proceedings.mlr.press/v97/raghu19a.html
[529]. Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function.
作者: Arvind U. Raghunathan,Anoop Cherian,Devesh K. Jha,
連結: http://proceedings.mlr.press/v97/raghunathan19a.html
[530]. On the Spectral Bias of Neural Networks.
作者: Nasim Rahaman,Aristide Baratin,Devansh Arpit,Felix Draxler,Min Lin,Fred A. Hamprecht,Yoshua Bengio,Aaron C. Courville,
連結: http://proceedings.mlr.press/v97/rahaman19a.html
[531]. Look Ma, No Latent Variables: Accurate Cutset Networks via Compilation.
作者: Tahrima Rahman,Shasha Jin,Vibhav Gogate,
連結: http://proceedings.mlr.press/v97/rahman19a.html
[532]. Does Data Augmentation Lead to Positive Margin?
作者: Shashank Rajput,Zhili Feng,Zachary B. Charles,Po-Ling Loh,Dimitris S. Papailiopoulos,
連結: http://proceedings.mlr.press/v97/rajput19a.html
[533]. Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables.
作者: Kate Rakelly,Aurick Zhou,Chelsea Finn,Sergey Levine,Deirdre Quillen,
連結: http://proceedings.mlr.press/v97/rakelly19a.html
[534]. Screening rules for Lasso with non-convex Sparse Regularizers.
作者: Alain Rakotomamonjy,Gilles Gasso,Joseph Salmon,
連結: http://proceedings.mlr.press/v97/rakotomamonjy19a.html
[535]. Topological Data Analysis of Decision Boundaries with Application to Model Selection.
作者: Karthikeyan Natesan Ramamurthy,Kush R. Varshney,Krishnan Mody,
連結: http://proceedings.mlr.press/v97/ramamurthy19a.html
[536]. HyperGAN: A Generative Model for Diverse, Performant Neural Networks.
作者: Neale Ratzlaff,Fuxin Li,
連結: http://proceedings.mlr.press/v97/ratzlaff19a.html
[537]. Efficient On-Device Models using Neural Projections.
作者: Sujith Ravi,
連結: http://proceedings.mlr.press/v97/ravi19a.html
[538]. A Block Coordinate Descent Proximal Method for Simultaneous Filtering and Parameter Estimation.
作者: Ramin Raziperchikolaei,Harish S. Bhat,
連結: http://proceedings.mlr.press/v97/raziperchikolaei19a.html
[539]. Do ImageNet Classifiers Generalize to ImageNet?
作者: Benjamin Recht,Rebecca Roelofs,Ludwig Schmidt,Vaishaal Shankar,
連結: http://proceedings.mlr.press/v97/recht19a.html
[540]. Fast Rates for a kNN Classifier Robust to Unknown Asymmetric Label Noise.
作者: Henry W. J. Reeve,Ata Kabán,
連結: http://proceedings.mlr.press/v97/reeve19a.html
[541]. Almost Unsupervised Text to Speech and Automatic Speech Recognition.
作者: Yi Ren,Xu Tan,Tao Qin,Sheng Zhao,Zhou Zhao,Tie-Yan Liu,
連結: http://proceedings.mlr.press/v97/ren19a.html
[542]. Adaptive Antithetic Sampling for Variance Reduction.
作者: Hongyu Ren,Shengjia Zhao,Stefano Ermon,
連結: http://proceedings.mlr.press/v97/ren19b.html
[543]. Adversarial Online Learning with noise.
作者: Alon Resler,Yishay Mansour,
連結: http://proceedings.mlr.press/v97/resler19a.html
[544]. A Polynomial Time MCMC Method for Sampling from Continuous Determinantal Point Processes.
作者: Alireza Rezaei,Shayan Oveis Gharan,
連結: http://proceedings.mlr.press/v97/rezaei19a.html
[545]. A Persistent Weisfeiler-Lehman Procedure for Graph Classification.
作者: Bastian Rieck,Christian Bock,Karsten M. Borgwardt,
連結: http://proceedings.mlr.press/v97/rieck19a.html
[546]. Efficient learning of smooth probability functions from Bernoulli tests with guarantees.
作者: Paul Rolland,Ali Kavis,Alexander Immer,Adish Singla,Volkan Cevher,
連結: http://proceedings.mlr.press/v97/rolland19a.html
[547]. Separable value functions across time-scales.
作者: Joshua Romoff,Peter Henderson,Ahmed Touati,Yann Ollivier,Joelle Pineau,Emma Brunskill,
連結: http://proceedings.mlr.press/v97/romoff19a.html
[548]. Online Convex Optimization in Adversarial Markov Decision Processes.
作者: Aviv Rosenberg,Yishay Mansour,
連結: http://proceedings.mlr.press/v97/rosenberg19a.html
[549]. Good Initializations of Variational Bayes for Deep Models.
作者: Simone Rossi,Pietro Michiardi,Maurizio Filippone,
連結: http://proceedings.mlr.press/v97/rossi19a.html
[550]. The Odds are Odd: A Statistical Test for Detecting Adversarial Examples.
作者: Kevin Roth,Yannic Kilcher,Thomas Hofmann,
連結: http://proceedings.mlr.press/v97/roth19a.html
[551]. Neuron birth-death dynamics accelerates gradient descent and converges asymptotically.
作者: Grant M. Rotskoff,Samy Jelassi,Joan Bruna,Eric Vanden-Eijnden,
連結: http://proceedings.mlr.press/v97/rotskoff19a.html
[552]. Iterative Linearized Control: Stable Algorithms and Complexity Guarantees.
作者: Vincent Roulet,Dmitriy Drusvyatskiy,Siddhartha S. Srinivasa,Zaïd Harchaoui,
連結: http://proceedings.mlr.press/v97/roulet19a.html
[553]. Statistics and Samples in Distributional Reinforcement Learning.
作者: Mark Rowland,Robert Dadashi,Saurabh Kumar,Rémi Munos,Marc G. Bellemare,Will Dabney,
連結: http://proceedings.mlr.press/v97/rowland19a.html
[554]. A Contrastive Divergence for Combining Variational Inference and MCMC.
作者: Francisco J. R. Ruiz,Michalis K. Titsias,
連結: http://proceedings.mlr.press/v97/ruiz19a.html
[555]. Plug-and-Play Methods Provably Converge with Properly Trained Denoisers.
作者: Ernest K. Ryu,Jialin Liu,Sicheng Wang,Xiaohan Chen,Zhangyang Wang,Wotao Yin,
連結: http://proceedings.mlr.press/v97/ryu19a.html
[556]. White-box vs Black-box: Bayes Optimal Strategies for Membership Inference.
作者: Alexandre Sablayrolles,Matthijs Douze,Cordelia Schmid,Yann Ollivier,Hervé Jégou,
連結: http://proceedings.mlr.press/v97/sablayrolles19a.html
[557]. Tractable n-Metrics for Multiple Graphs.
作者: Sam Safavi,José Bento,
連結: http://proceedings.mlr.press/v97/safavi19a.html
[558]. An Optimal Private Stochastic-MAB Algorithm based on Optimal Private Stopping Rule.
作者: Touqir Sajed,Or Sheffet,
連結: http://proceedings.mlr.press/v97/sajed19a.html
[559]. Deep Gaussian Processes with Importance-Weighted Variational Inference.
作者: Hugh Salimbeni,Vincent Dutordoir,James Hensman,Marc Peter Deisenroth,
連結: http://proceedings.mlr.press/v97/salimbeni19a.html
[560]. Multivariate Submodular Optimization.
作者: Richard Santiago,F. Bruce Shepherd,
連結: http://proceedings.mlr.press/v97/santiago19a.html
[561]. Near optimal finite time identification of arbitrary linear dynamical systems.
作者: Tuhin Sarkar,Alexander Rakhlin,
連結: http://proceedings.mlr.press/v97/sarkar19a.html
[562]. Breaking Inter-Layer Co-Adaptation by Classifier Anonymization.
作者: Ikuro Sato,Kohta Ishikawa,Guoqing Liu,Masayuki Tanaka,
連結: http://proceedings.mlr.press/v97/sato19a.html
[563]. A Theoretical Analysis of Contrastive Unsupervised Representation Learning.
作者: Nikunj Saunshi,Orestis Plevrakis,Sanjeev Arora,Mikhail Khodak,Hrishikesh Khandeparkar,
連結: http://proceedings.mlr.press/v97/saunshi19a.html
[564]. Locally Private Bayesian Inference for Count Models.
作者: Aaron Schein,Zhiwei Steven Wu,Alexandra Schofield,Mingyuan Zhou,Hanna M. Wallach,
連結: http://proceedings.mlr.press/v97/schein19a.html
[565]. Weakly-Supervised Temporal Localization via Occurrence Count Learning.
作者: Julien Schroeter,Kirill A. Sidorov,A. David Marshall,
連結: http://proceedings.mlr.press/v97/schroeter19a.html
[566]. Discovering Context Effects from Raw Choice Data.
作者: Arjun Seshadri,Alex Peysakhovich,Johan Ugander,
連結: http://proceedings.mlr.press/v97/seshadri19a.html
[567]. On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference.
作者: Rohin Shah,Noah Gundotra,Pieter Abbeel,Anca D. Dragan,
連結: http://proceedings.mlr.press/v97/shah19a.html
[568]. Exploration Conscious Reinforcement Learning Revisited.
作者: Lior Shani,Yonathan Efroni,Shie Mannor,
連結: http://proceedings.mlr.press/v97/shani19a.html
[569]. Compressed Factorization: Fast and Accurate Low-Rank Factorization of Compressively-Sensed Data.
作者: Vatsal Sharan,Kai Sheng Tai,Peter Bailis,Gregory Valiant,
連結: http://proceedings.mlr.press/v97/sharan19a.html
[570]. Conditional Independence in Testing Bayesian Networks.
作者: Yujia Shen,Haiying Huang,Arthur Choi,Adnan Darwiche,
連結: http://proceedings.mlr.press/v97/shen19a.html
[571]. Learning to Clear the Market.
作者: Weiran Shen,Sébastien Lahaie,Renato Paes Leme,
連結: http://proceedings.mlr.press/v97/shen19b.html
[572]. Hessian Aided Policy Gradient.
作者: Zebang Shen,Alejandro Ribeiro,Hamed Hassani,Hui Qian,Chao Mi,
連結: http://proceedings.mlr.press/v97/shen19d.html
[573]. Learning with Bad Training Data via Iterative Trimmed Loss Minimization.
作者: Yanyao Shen,Sujay Sanghavi,
連結: http://proceedings.mlr.press/v97/shen19e.html
[574]. Replica Conditional Sequential Monte Carlo.
作者: Alex Shestopaloff,Arnaud Doucet,
連結: http://proceedings.mlr.press/v97/shestopaloff19a.html
[575]. Scalable Training of Inference Networks for Gaussian-Process Models.
作者: Jiaxin Shi,Mohammad Emtiyaz Khan,Jun Zhu,
連結: http://proceedings.mlr.press/v97/shi19a.html
[576]. Fast Direct Search in an Optimally Compressed Continuous Target Space for Efficient Multi-Label Active Learning.
作者: Weishi Shi,Qi Yu,
連結: http://proceedings.mlr.press/v97/shi19b.html
[577]. Model-Based Active Exploration.
作者: Pranav Shyam,Wojciech Jaskowski,Faustino Gomez,
連結: http://proceedings.mlr.press/v97/shyam19a.html
[578]. Rehashing Kernel Evaluation in High Dimensions.
作者: Paris Siminelakis,Kexin Rong,Peter Bailis,Moses Charikar,Philip Levis,
連結: http://proceedings.mlr.press/v97/siminelakis19a.html
[579]. Revisiting precision recall definition for generative modeling.
作者: Loïc Simon,Ryan Webster,Julien Rabin,
連結: http://proceedings.mlr.press/v97/simon19a.html
[580]. First-Order Adversarial Vulnerability of Neural Networks and Input Dimension.
作者: Carl-Johann Simon-Gabriel,Yann Ollivier,Léon Bottou,Bernhard Schölkopf,David Lopez-Paz,
連結: http://proceedings.mlr.press/v97/simon-gabriel19a.html
[581]. Refined Complexity of PCA with Outliers.
作者: Kirill Simonov,Fedor V. Fomin,Petr A. Golovach,Fahad Panolan,
連結: http://proceedings.mlr.press/v97/simonov19a.html
[582]. A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks.
作者: Umut Simsekli,Levent Sagun,Mert Gürbüzbalaban,
連結: http://proceedings.mlr.press/v97/simsekli19a.html
[583]. Non-Parametric Priors For Generative Adversarial Networks.
作者: Rajhans Singh,Pavan K. Turaga,Suren Jayasuriya,Ravi Garg,Martin W. Braun,
連結: http://proceedings.mlr.press/v97/singh19a.html
[584]. Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation.
作者: Sahil Singla,Eric Wallace,Shi Feng,Soheil Feizi,
連結: http://proceedings.mlr.press/v97/singla19a.html
[585]. kernelPSI: a Post-Selection Inference Framework for Nonlinear Variable Selection.
作者: Lotfi Slim,Clément Chatelain,Chloé-Agathe Azencott,Jean-Philippe Vert,
連結: http://proceedings.mlr.press/v97/slim19a.html
[586]. GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects.
作者: Edward J. Smith,Scott Fujimoto,Adriana Romero,David Meger,
連結: http://proceedings.mlr.press/v97/smith19a.html
[587]. The Evolved Transformer.
作者: David R. So,Quoc V. Le,Chen Liang,
連結: http://proceedings.mlr.press/v97/so19a.html
[588]. QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning.
作者: Kyunghwan Son,Daewoo Kim,Wan Ju Kang,David Hostallero,Yung Yi,
連結: http://proceedings.mlr.press/v97/son19a.html
[589]. Distribution calibration for regression.
作者: Hao Song,Tom Diethe,Meelis Kull,Peter A. Flach,
連結: http://proceedings.mlr.press/v97/song19a.html
[590]. SELFIE: Refurbishing Unclean Samples for Robust Deep Learning.
作者: Hwanjun Song,Minseok Kim,Jae-Gil Lee,
連結: http://proceedings.mlr.press/v97/song19b.html
[591]. Revisiting the Softmax Bellman Operator: New Benefits and New Perspective.
作者: Zhao Song,Ronald Parr,Lawrence Carin,
連結: http://proceedings.mlr.press/v97/song19c.html
[592]. MASS: Masked Sequence to Sequence Pre-training for Language Generation.
作者: Kaitao Song,Xu Tan,Tao Qin,Jianfeng Lu,Tie-Yan Liu,
連結: http://proceedings.mlr.press/v97/song19d.html
[593]. Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication.
作者: Pedro Soto,Jun Li,Xiaodi Fan,
連結: http://proceedings.mlr.press/v97/soto19a.html
[594]. Compressing Gradient Optimizers via Count-Sketches.
作者: Ryan Spring,Anastasios Kyrillidis,Vijai Mohan,Anshumali Shrivastava,
連結: http://proceedings.mlr.press/v97/spring19a.html
[595]. Escaping Saddle Points with Adaptive Gradient Methods.
作者: Matthew Staib,Sashank J. Reddi,Satyen Kale,Sanjiv Kumar,Suvrit Sra,
連結: http://proceedings.mlr.press/v97/staib19a.html
[596]. Faster Attend-Infer-Repeat with Tractable Probabilistic Models.
作者: Karl Stelzner,Robert Peharz,Kristian Kersting,
連結: http://proceedings.mlr.press/v97/stelzner19a.html
[597]. Insertion Transformer: Flexible Sequence Generation via Insertion Operations.
作者: Mitchell Stern,William Chan,Jamie Kiros,Jakob Uszkoreit,
連結: http://proceedings.mlr.press/v97/stern19a.html
[598]. BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning.
作者: Asa Cooper Stickland,Iain Murray,
連結: http://proceedings.mlr.press/v97/stickland19a.html
[599]. Learning Optimal Linear Regularizers.
作者: Matthew Streeter,
連結: http://proceedings.mlr.press/v97/streeter19a.html
[600]. CAB: Continuous Adaptive Blending for Policy Evaluation and Learning.
作者: Yi Su,Lequn Wang,Michele Santacatterina,Thorsten Joachims,
連結: http://proceedings.mlr.press/v97/su19a.html
[601]. Learning Distance for Sequences by Learning a Ground Metric.
作者: Bing Su,Ying Wu,
連結: http://proceedings.mlr.press/v97/su19b.html
[602]. Contextual Memory Trees.
作者: Wen Sun,Alina Beygelzimer,Hal Daumé III,John Langford,Paul Mineiro,
連結: http://proceedings.mlr.press/v97/sun19a.html
[603]. Provably Efficient Imitation Learning from Observation Alone.
作者: Wen Sun,Anirudh Vemula,Byron Boots,Drew Bagnell,
連結: http://proceedings.mlr.press/v97/sun19b.html
[604]. Active Learning for Decision-Making from Imbalanced Observational Data.
作者: Iiris Sundin,Peter Schulam,Eero Siivola,Aki Vehtari,Suchi Saria,Samuel Kaski,
連結: http://proceedings.mlr.press/v97/sundin19a.html
[605]. Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness.
作者: Raphael Suter,Ðorðe Miladinovic,Bernhard Schölkopf,Stefan Bauer,
連結: http://proceedings.mlr.press/v97/suter19a.html
[606]. Hyperbolic Disk Embeddings for Directed Acyclic Graphs.
作者: Ryota Suzuki,Ryusuke Takahama,Shun Onoda,
連結: http://proceedings.mlr.press/v97/suzuki19a.html
[607]. Accelerated Flow for Probability Distributions.
作者: Amirhossein Taghvaei,Prashant G. Mehta,
連結: http://proceedings.mlr.press/v97/taghvaei19a.html
[608]. Equivariant Transformer Networks.
作者: Kai Sheng Tai,Peter Bailis,Gregory Valiant,
連結: http://proceedings.mlr.press/v97/tai19a.html
[609]. Making Deep Q-learning methods robust to time discretization.
作者: Corentin Tallec,Léonard Blier,Yann Ollivier,
連結: http://proceedings.mlr.press/v97/tallec19a.html
[610]. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
作者: Mingxing Tan,Quoc V. Le,
連結: http://proceedings.mlr.press/v97/tan19a.html
[611]. Hierarchical Decompositional Mixtures of Variational Autoencoders.
作者: Ping Liang Tan,Robert Peharz,
連結: http://proceedings.mlr.press/v97/tan19b.html
[612]. Mallows ranking models: maximum likelihood estimate and regeneration.
作者: Wenpin Tang,
連結: http://proceedings.mlr.press/v97/tang19a.html
[613]. Correlated Variational Auto-Encoders.
作者: Da Tang,Dawen Liang,Tony Jebara,Nicholas Ruozzi,
連結: http://proceedings.mlr.press/v97/tang19b.html
[614]. The Variational Predictive Natural Gradient.
作者: Da Tang,Rajesh Ranganath,
連結: http://proceedings.mlr.press/v97/tang19c.html
[615]. DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression.
作者: Hanlin Tang,Chen Yu,Xiangru Lian,Tong Zhang,Ji Liu,
連結: http://proceedings.mlr.press/v97/tang19d.html
[616]. Adaptive Neural Trees.
作者: Ryutaro Tanno,Kai Arulkumaran,Daniel C. Alexander,Antonio Criminisi,Aditya V. Nori,
連結: http://proceedings.mlr.press/v97/tanno19a.html
[617]. Variational Annealing of GANs: A Langevin Perspective.
作者: Chenyang Tao,Shuyang Dai,Liqun Chen,Ke Bai,Junya Chen,Chang Liu,Ruiyi Zhang,Georgiy V. Bobashev,Lawrence Carin,
連結: http://proceedings.mlr.press/v97/tao19a.html
[618]. Predicate Exchange: Inference with Declarative Knowledge.
作者: Zenna Tavares,Javier Burroni,Edgar Minasyan,Armando Solar-Lezama,Rajesh Ranganath,
連結: http://proceedings.mlr.press/v97/tavares19a.html
[619]. The Natural Language of Actions.
作者: Guy Tennenholtz,Shie Mannor,
連結: http://proceedings.mlr.press/v97/tennenholtz19a.html
[620]. Kernel Normalized Cut: a Theoretical Revisit.
作者: Yoshikazu Terada,Michio Yamamoto,
連結: http://proceedings.mlr.press/v97/terada19a.html
[621]. Action Robust Reinforcement Learning and Applications in Continuous Control.
作者: Chen Tessler,Yonathan Efroni,Shie Mannor,
連結: http://proceedings.mlr.press/v97/tessler19a.html
[622]. Concentration Inequalities for Conditional Value at Risk.
作者: Philip S. Thomas,Erik G. Learned-Miller,
連結: http://proceedings.mlr.press/v97/thomas19a.html
[623]. Combating Label Noise in Deep Learning using Abstention.
作者: Sunil Thulasidasan,Tanmoy Bhattacharya,Jeff A. Bilmes,Gopinath Chennupati,Jamal Mohd-Yusof,
連結: http://proceedings.mlr.press/v97/thulasidasan19a.html
[624]. ELF OpenGo: an analysis and open reimplementation of AlphaZero.
作者: Yuandong Tian,Jerry Ma,Qucheng Gong,Shubho Sengupta,Zhuoyuan Chen,James Pinkerton,Larry Zitnick,
連結: http://proceedings.mlr.press/v97/tian19a.html
[625]. Random Matrix Improved Covariance Estimation for a Large Class of Metrics.
作者: Malik Tiomoko,Romain Couillet,Florent Bouchard,Guillaume Ginolhac,
連結: http://proceedings.mlr.press/v97/tiomoko19a.html
[626]. Transfer of Samples in Policy Search via Multiple Importance Sampling.
作者: Andrea Tirinzoni,Mattia Salvini,Marcello Restelli,
連結: http://proceedings.mlr.press/v97/tirinzoni19a.html
[627]. Optimal Transport for structured data with application on graphs.
作者: Titouan Vayer,Nicolas Courty,Romain Tavenard,Laetitia Chapel,Rémi Flamary,
連結: http://proceedings.mlr.press/v97/titouan19a.html
[628]. Discovering Latent Covariance Structures for Multiple Time Series.
作者: Anh Tong,Jaesik Choi,
連結: http://proceedings.mlr.press/v97/tong19a.html
[629]. Bayesian Generative Active Deep Learning.
作者: Toan Tran,Thanh-Toan Do,Ian D. Reid,Gustavo Carneiro,
連結: http://proceedings.mlr.press/v97/tran19a.html
[630]. DeepNose: Using artificial neural networks to represent the space of odorants.
作者: Ngoc B. Tran,Daniel R. Kepple,Sergey Shuvaev,Alexei A. Koulakov,
連結: http://proceedings.mlr.press/v97/tran19b.html
[631]. LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data Approximations.
作者: Brian L. Trippe,Jonathan H. Huggins,Raj Agrawal,Tamara Broderick,
連結: http://proceedings.mlr.press/v97/trippe19a.html
[632]. Learning Hawkes Processes Under Synchronization Noise.
作者: William Trouleau,Jalal Etesami,Matthias Grossglauser,Negar Kiyavash,Patrick Thiran,
連結: http://proceedings.mlr.press/v97/trouleau19a.html
[633]. Homomorphic Sensing.
作者: Manolis C. Tsakiris,Liangzu Peng,
連結: http://proceedings.mlr.press/v97/tsakiris19a.html
[634]. Metropolis-Hastings Generative Adversarial Networks.
作者: Ryan D. Turner,Jane Hung,Eric Frank,Yunus Saatchi,Jason Yosinski,
連結: http://proceedings.mlr.press/v97/turner19a.html
[635]. Distributed, Egocentric Representations of Graphs for Detecting Critical Structures.
作者: Ruo-Chun Tzeng,Shan-Hung Wu,
連結: http://proceedings.mlr.press/v97/tzeng19a.html
[636]. Sublinear Space Private Algorithms Under the Sliding Window Model.
作者: Jalaj Upadhyay,
連結: http://proceedings.mlr.press/v97/upadhyay19a.html
[637]. Fairness without Harm: Decoupled Classifiers with Preference Guarantees.
作者: Berk Ustun,Yang Liu,David C. Parkes,
連結: http://proceedings.mlr.press/v97/ustun19a.html
[638]. Large-Scale Sparse Kernel Canonical Correlation Analysis.
作者: Viivi Uurtio,Sahely Bhadra,Juho Rousu,
連結: http://proceedings.mlr.press/v97/uurtio19a.html
[639]. Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD.
作者: Marten van Dijk,Lam M. Nguyen,Phuong Ha Nguyen,Dzung T. Phan,
連結: http://proceedings.mlr.press/v97/van-dijk19a.html
[640]. Composing Value Functions in Reinforcement Learning.
作者: Benjamin van Niekerk,Steven James,Adam Christopher Earle,Benjamin Rosman,
連結: http://proceedings.mlr.press/v97/van-niekerk19a.html
[641]. Model Comparison for Semantic Grouping.
作者: Francisco Vargas,Kamen Brestnichki,Nils Hammerla,
連結: http://proceedings.mlr.press/v97/vargas19a.html
[642]. Learning Dependency Structures for Weak Supervision Models.
作者: Paroma Varma,Frederic Sala,Ann He,Alexander Ratner,Christopher Ré,
連結: http://proceedings.mlr.press/v97/varma19a.html
[643]. Probabilistic Neural Symbolic Models for Interpretable Visual Question Answering.
作者: Ramakrishna Vedantam,Karan Desai,Stefan Lee,Marcus Rohrbach,Dhruv Batra,Devi Parikh,
連結: http://proceedings.mlr.press/v97/vedantam19a.html
[644]. Manifold Mixup: Better Representations by Interpolating Hidden States.
作者: Vikas Verma,Alex Lamb,Christopher Beckham,Amir Najafi,Ioannis Mitliagkas,David Lopez-Paz,Yoshua Bengio,
連結: http://proceedings.mlr.press/v97/verma19a.html
[645]. Maximum Likelihood Estimation for Learning Populations of Parameters.
作者: Ramya Korlakai Vinayak,Weihao Kong,Gregory Valiant,Sham M. Kakade,
連結: http://proceedings.mlr.press/v97/vinayak19a.html
[646]. Understanding Priors in Bayesian Neural Networks at the Unit Level.
作者: Mariia Vladimirova,Jakob Verbeek,Pablo Mesejo,Julyan Arbel,
連結: http://proceedings.mlr.press/v97/vladimirova19a.html
[647]. On the Design of Estimators for Bandit Off-Policy Evaluation.
作者: Nikos Vlassis,Aurélien Bibaut,Maria Dimakopoulou,Tony Jebara,
連結: http://proceedings.mlr.press/v97/vlassis19a.html
[648]. Learning to select for a predefined ranking.
作者: Aleksandr Vorobev,Aleksei Ustimenko,Gleb Gusev,Pavel Serdyukov,
連結: http://proceedings.mlr.press/v97/vorobev19a.html
[649]. On the Limitations of Representing Functions on Sets.
作者: Edward Wagstaff,Fabian Fuchs,Martin Engelcke,Ingmar Posner,Michael A. Osborne,
連結: http://proceedings.mlr.press/v97/wagstaff19a.html
[650]. Graph Convolutional Gaussian Processes.
作者: Ian Walker,Ben Glocker,
連結: http://proceedings.mlr.press/v97/walker19a.html
[651]. Gaining Free or Low-Cost Interpretability with Interpretable Partial Substitute.
作者: Tong Wang,
連結: http://proceedings.mlr.press/v97/wang19a.html
[652]. Convolutional Poisson Gamma Belief Network.
作者: Chaojie Wang,Bo Chen,Sucheng Xiao,Mingyuan Zhou,
連結: http://proceedings.mlr.press/v97/wang19b.html
[653]. Differentially Private Empirical Risk Minimization with Non-convex Loss Functions.
作者: Di Wang,Changyou Chen,Jinhui Xu,
連結: http://proceedings.mlr.press/v97/wang19c.html
[654]. Random Expert Distillation: Imitation Learning via Expert Policy Support Estimation.
作者: Ruohan Wang,Carlo Ciliberto,Pierluigi Vito Amadori,Yiannis Demiris,
連結: http://proceedings.mlr.press/v97/wang19d.html
[655]. SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver.
作者: Po-Wei Wang,Priya L. Donti,Bryan Wilder,J. Zico Kolter,
連結: http://proceedings.mlr.press/v97/wang19e.html
[656]. Improving Neural Language Modeling via Adversarial Training.
作者: Dilin Wang,ChengYue Gong,Qiang Liu,
連結: http://proceedings.mlr.press/v97/wang19f.html
[657]. EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis.
作者: Chaoqi Wang,Roger B. Grosse,Sanja Fidler,Guodong Zhang,
連結: http://proceedings.mlr.press/v97/wang19g.html
[658]. Nonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models.
作者: Dilin Wang,Qiang Liu,
連結: http://proceedings.mlr.press/v97/wang19h.html
[659]. On the Convergence and Robustness of Adversarial Training.
作者: Yisen Wang,Xingjun Ma,James Bailey,Jinfeng Yi,Bowen Zhou,Quanquan Gu,
連結: http://proceedings.mlr.press/v97/wang19i.html
[660]. State-Regularized Recurrent Neural Networks.
作者: Cheng Wang,Mathias Niepert,
連結: http://proceedings.mlr.press/v97/wang19j.html
[661]. Deep Factors for Forecasting.
作者: Yuyang Wang,Alex Smola,Danielle C. Maddix,Jan Gasthaus,Dean Foster,Tim Januschowski,
連結: http://proceedings.mlr.press/v97/wang19k.html
[662]. Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions.
作者: Hao Wang,Berk Ustun,Flávio P. Calmon,
連結: http://proceedings.mlr.press/v97/wang19l.html
[663]. On Sparse Linear Regression in the Local Differential Privacy Model.
作者: Di Wang,Jinhui Xu,
連結: http://proceedings.mlr.press/v97/wang19m.html
[664]. Doubly Robust Joint Learning for Recommendation on Data Missing Not at Random.
作者: Xiaojie Wang,Rui Zhang,Yu Sun,Jianzhong Qi,
連結: http://proceedings.mlr.press/v97/wang19n.html
[665]. On the Generalization Gap in Reparameterizable Reinforcement Learning.
作者: Huan Wang,Stephan Zheng,Caiming Xiong,Richard Socher,
連結: http://proceedings.mlr.press/v97/wang19o.html
[666]. Bias Also Matters: Bias Attribution for Deep Neural Network Explanation.
作者: Shengjie Wang,Tianyi Zhou,Jeff A. Bilmes,
連結: http://proceedings.mlr.press/v97/wang19p.html
[667]. Jumpout : Improved Dropout for Deep Neural Networks with ReLUs.
作者: Shengjie Wang,Tianyi Zhou,Jeff A. Bilmes,
連結: http://proceedings.mlr.press/v97/wang19q.html
[668]. AdaGrad stepsizes: sharp convergence over nonconvex landscapes.
作者: Rachel Ward,Xiaoxia Wu,Léon Bottou,
連結: http://proceedings.mlr.press/v97/ward19a.html
[669]. Generalized Linear Rule Models.
作者: Dennis Wei,Sanjeeb Dash,Tian Gao,Oktay Günlük,
連結: http://proceedings.mlr.press/v97/wei19a.html
[670]. On the statistical rate of nonlinear recovery in generative models with heavy-tailed data.
作者: Xiaohan Wei,Zhuoran Yang,Zhaoran Wang,
連結: http://proceedings.mlr.press/v97/wei19b.html
[671]. CapsAndRuns: An Improved Method for Approximately Optimal Algorithm Configuration.
作者: Gellért Weisz,András György,Csaba Szepesvári,
連結: http://proceedings.mlr.press/v97/weisz19a.html
[672]. Non-Monotonic Sequential Text Generation.
作者: Sean Welleck,Kianté Brantley,Hal Daumé III,Kyunghyun Cho,
連結: http://proceedings.mlr.press/v97/welleck19a.html
[673]. PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach.
作者: Lily Weng,Pin-Yu Chen,Lam M. Nguyen,Mark S. Squillante,Akhilan Boopathy,Ivan V. Oseledets,Luca Daniel,
連結: http://proceedings.mlr.press/v97/weng19a.html
[674]. Learning deep kernels for exponential family densities.
作者: Wenliang Li,Dougal J. Sutherland,Heiko Strathmann,Arthur Gretton,
連結: http://proceedings.mlr.press/v97/wenliang19a.html
[675]. Improving Model Selection by Employing the Test Data.
作者: Max Westphal,Werner Brannath,
連結: http://proceedings.mlr.press/v97/westphal19a.html
[676]. Automatic Classifiers as Scientific Instruments: One Step Further Away from Ground-Truth.
作者: Jacob Whitehill,Anand Ramakrishnan,
連結: http://proceedings.mlr.press/v97/whitehill19a.html
[677]. Moment-Based Variational Inference for Markov Jump Processes.
作者: Christian Wildner,Heinz Koeppl,
連結: http://proceedings.mlr.press/v97/wildner19a.html
[678]. End-to-End Probabilistic Inference for Nonstationary Audio Analysis.
作者: William J. Wilkinson,Michael Riis Andersen,Joshua D. Reiss,Dan Stowell,Arno Solin,
連結: http://proceedings.mlr.press/v97/wilkinson19a.html
[679]. Fairness risk measures.
作者: Robert C. Williamson,Aditya Krishna Menon,
連結: http://proceedings.mlr.press/v97/williamson19a.html
[680]. Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation.
作者: Samuel Wiqvist,Pierre-Alexandre Mattei,Umberto Picchini,Jes Frellsen,
連結: http://proceedings.mlr.press/v97/wiqvist19a.html
[681]. Wasserstein Adversarial Examples via Projected Sinkhorn Iterations.
作者: Eric Wong,Frank R. Schmidt,J. Zico Kolter,
連結: http://proceedings.mlr.press/v97/wong19a.html
[682]. Imitation Learning from Imperfect Demonstration.
作者: Yueh-Hua Wu,Nontawat Charoenphakdee,Han Bao,Voot Tangkaratt,Masashi Sugiyama,
連結: http://proceedings.mlr.press/v97/wu19a.html
[683]. Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling.
作者: Shanshan Wu,Alex Dimakis,Sujay Sanghavi,Felix X. Yu,Daniel Niels Holtmann-Rice,Dmitry Storcheus,Afshin Rostamizadeh,Sanjiv Kumar,
連結: http://proceedings.mlr.press/v97/wu19b.html
[684]. Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin.
作者: Xi-Zhu Wu,Song Liu,Zhi-Hua Zhou,
連結: http://proceedings.mlr.press/v97/wu19c.html
[685]. Deep Compressed Sensing.
作者: Yan Wu,Mihaela Rosca,Timothy P. Lillicrap,
連結: http://proceedings.mlr.press/v97/wu19d.html
[686]. Simplifying Graph Convolutional Networks.
作者: Felix Wu,Amauri H. Souza Jr.,Tianyi Zhang,Christopher Fifty,Tao Yu,Kilian Q. Weinberger,
連結: http://proceedings.mlr.press/v97/wu19e.html
[687]. Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment.
作者: Yifan Wu,Ezra Winston,Divyansh Kaushik,Zachary C. Lipton,
連結: http://proceedings.mlr.press/v97/wu19f.html
[688]. On Scalable and Efficient Computation of Large Scale Optimal Transport.
作者: Yujia Xie,Minshuo Chen,Haoming Jiang,Tuo Zhao,Hongyuan Zha,
連結: http://proceedings.mlr.press/v97/xie19a.html
[689]. Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance.
作者: Cong Xie,Sanmi Koyejo,Indranil Gupta,
連結: http://proceedings.mlr.press/v97/xie19b.html
[690]. Differentiable Linearized ADMM.
作者: Xingyu Xie,Jianlong Wu,Guangcan Liu,Zhisheng Zhong,Zhouchen Lin,
連結: http://proceedings.mlr.press/v97/xie19c.html
[691]. Calibrated Approximate Bayesian Inference.
作者: Hanwen Xing,Geoff Nicholls,Jeong Lee,
連結: http://proceedings.mlr.press/v97/xing19a.html
[692]. Power k-Means Clustering.
作者: Jason Xu,Kenneth Lange,
連結: http://proceedings.mlr.press/v97/xu19a.html
[693]. Gromov-Wasserstein Learning for Graph Matching and Node Embedding.
作者: Hongteng Xu,Dixin Luo,Hongyuan Zha,Lawrence Carin,
連結: http://proceedings.mlr.press/v97/xu19b.html
[694]. Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence.
作者: Yi Xu,Qi Qi,Qihang Lin,Rong Jin,Tianbao Yang,
連結: http://proceedings.mlr.press/v97/xu19c.html
[695]. Learning a Prior over Intent via Meta-Inverse Reinforcement Learning.
作者: Kelvin Xu,Ellis Ratner,Anca D. Dragan,Sergey Levine,Chelsea Finn,
連結: http://proceedings.mlr.press/v97/xu19d.html
[696]. Variational Russian Roulette for Deep Bayesian Nonparametrics.
作者: Kai Xu,Akash Srivastava,Charles A. Sutton,
連結: http://proceedings.mlr.press/v97/xu19e.html
[697]. Supervised Hierarchical Clustering with Exponential Linkage.
作者: Nishant Yadav,Ari Kobren,Nicholas Monath,Andrew McCallum,
連結: http://proceedings.mlr.press/v97/yadav19a.html
[698]. Learning to Prove Theorems via Interacting with Proof Assistants.
作者: Kaiyu Yang,Jia Deng,
連結: http://proceedings.mlr.press/v97/yang19a.html
[699]. Sample-Optimal Parametric Q-Learning Using Linearly Additive Features.
作者: Lin Yang,Mengdi Wang,
連結: http://proceedings.mlr.press/v97/yang19b.html
[700]. LegoNet: Efficient Convolutional Neural Networks with Lego Filters.
作者: Zhaohui Yang,Yunhe Wang,Chuanjian Liu,Hanting Chen,Chunjing Xu,Boxin Shi,Chao Xu,Chang Xu,
連結: http://proceedings.mlr.press/v97/yang19c.html
[701]. SWALP : Stochastic Weight Averaging in Low Precision Training.
作者: Guandao Yang,Tianyi Zhang,Polina Kirichenko,Junwen Bai,Andrew Gordon Wilson,Christopher De Sa,
連結: http://proceedings.mlr.press/v97/yang19d.html
[702]. ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation.
作者: Yuzhe Yang,Guo Zhang,Zhi Xu,Dina Katabi,
連結: http://proceedings.mlr.press/v97/yang19e.html
[703]. Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations.
作者: Quanming Yao,James Tin-Yau Kwok,Bo Han,
連結: http://proceedings.mlr.press/v97/yao19a.html
[704]. Hierarchically Structured Meta-learning.
作者: Huaxiu Yao,Ying Wei,Junzhou Huang,Zhenhui Li,
連結: http://proceedings.mlr.press/v97/yao19b.html
[705]. Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel $k$-means Clustering.
作者: Taisuke Yasuda,David P. Woodruff,Manuel Fernandez,
連結: http://proceedings.mlr.press/v97/yasuda19a.html
[706]. Understanding Geometry of Encoder-Decoder CNNs.
作者: Jong Chul Ye,Woon Kyoung Sung,
連結: http://proceedings.mlr.press/v97/ye19a.html
[707]. Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning.
作者: Dong Yin,Yudong Chen,Kannan Ramchandran,Peter L. Bartlett,
連結: http://proceedings.mlr.press/v97/yin19a.html
[708]. Rademacher Complexity for Adversarially Robust Generalization.
作者: Dong Yin,Kannan Ramchandran,Peter L. Bartlett,
連結: http://proceedings.mlr.press/v97/yin19b.html
[709]. ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables.
作者: Mingzhang Yin,Yuguang Yue,Mingyuan Zhou,
連結: http://proceedings.mlr.press/v97/yin19c.html
[710]. NAS-Bench-101: Towards Reproducible Neural Architecture Search.
作者: Chris Ying,Aaron Klein,Eric Christiansen,Esteban Real,Kevin Murphy,Frank Hutter,
連結: http://proceedings.mlr.press/v97/ying19a.html
[711]. TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning.
作者: Sung Whan Yoon,Jun Seo,Jaekyun Moon,
連結: http://proceedings.mlr.press/v97/yoon19a.html
[712]. Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation.
作者: Kaichao You,Ximei Wang,Mingsheng Long,Michael I. Jordan,
連結: http://proceedings.mlr.press/v97/you19a.html
[713]. Position-aware Graph Neural Networks.
作者: Jiaxuan You,Rex Ying,Jure Leskovec,
連結: http://proceedings.mlr.press/v97/you19b.html
[714]. Learning Neurosymbolic Generative Models via Program Synthesis.
作者: Halley Young,Osbert Bastani,Mayur Naik,
連結: http://proceedings.mlr.press/v97/young19a.html
[715]. DAG-GNN: DAG Structure Learning with Graph Neural Networks.
作者: Yue Yu,Jie Chen,Tian Gao,Mo Yu,
連結: http://proceedings.mlr.press/v97/yu19a.html
[716]. How does Disagreement Help Generalization against Label Corruption?
作者: Xingrui Yu,Bo Han,Jiangchao Yao,Gang Niu,Ivor W. Tsang,Masashi Sugiyama,
連結: http://proceedings.mlr.press/v97/yu19b.html
[717]. On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization.
作者: Hao Yu,Rong Jin,
連結: http://proceedings.mlr.press/v97/yu19c.html
[718]. On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization.
作者: Hao Yu,Rong Jin,Sen Yang,
連結: http://proceedings.mlr.press/v97/yu19d.html
[719]. Multi-Agent Adversarial Inverse Reinforcement Learning.
作者: Lantao Yu,Jiaming Song,Stefano Ermon,
連結: http://proceedings.mlr.press/v97/yu19e.html
[720]. Distributed Learning over Unreliable Networks.
作者: Chen Yu,Hanlin Tang,Cédric Renggli,Simon Kassing,Ankit Singla,Dan Alistarh,Ce Zhang,Ji Liu,
連結: http://proceedings.mlr.press/v97/yu19f.html
[721]. Online Adaptive Principal Component Analysis and Its extensions.
作者: Jianjun Yuan,Andrew G. Lamperski,
連結: http://proceedings.mlr.press/v97/yuan19a.html
[722]. Generative Modeling of Infinite Occluded Objects for Compositional Scene Representation.
作者: Jinyang Yuan,Bin Li,Xiangyang Xue,
連結: http://proceedings.mlr.press/v97/yuan19b.html
[723]. Differential Inclusions for Modeling Nonsmooth ADMM Variants: A Continuous Limit Theory.
作者: Huizhuo Yuan,Yuren Zhou,Chris Junchi Li,Qingyun Sun,
連結: http://proceedings.mlr.press/v97/yuan19c.html
[724]. Trimming the $ell_1$ Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning.
作者: Jihun Yun,Peng Zheng,Eunho Yang,Aurelie C. Lozano,Aleksandr Y. Aravkin,
連結: http://proceedings.mlr.press/v97/yun19a.html
[725]. Bayesian Nonparametric Federated Learning of Neural Networks.
作者: Mikhail Yurochkin,Mayank Agarwal,Soumya Ghosh,Kristjan H. Greenewald,Trong Nghia Hoang,Yasaman Khazaeni,
連結: http://proceedings.mlr.press/v97/yurochkin19a.html
[726]. Dirichlet Simplex Nest and Geometric Inference.
作者: Mikhail Yurochkin,Aritra Guha,Yuekai Sun,XuanLong Nguyen,
連結: http://proceedings.mlr.press/v97/yurochkin19b.html
[727]. A Conditional-Gradient-Based Augmented Lagrangian Framework.
作者: Alp Yurtsever,Olivier Fercoq,Volkan Cevher,
連結: http://proceedings.mlr.press/v97/yurtsever19a.html
[728]. Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator.
作者: Alp Yurtsever,Suvrit Sra,Volkan Cevher,
連結: http://proceedings.mlr.press/v97/yurtsever19b.html
[729]. Context-Aware Zero-Shot Learning for Object Recognition.
作者: Eloi Zablocki,Patrick Bordes,Laure Soulier,Benjamin Piwowarski,Patrick Gallinari,
連結: http://proceedings.mlr.press/v97/zablocki19a.html
[730]. Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds.
作者: Andrea Zanette,Emma Brunskill,
連結: http://proceedings.mlr.press/v97/zanette19a.html
[731]. Global Convergence of Block Coordinate Descent in Deep Learning.
作者: Jinshan Zeng,Tim Tsz-Kit Lau,Shaobo Lin,Yuan Yao,
連結: http://proceedings.mlr.press/v97/zeng19a.html
[732]. Making Convolutional Networks Shift-Invariant Again.
作者: Richard Zhang,
連結: http://proceedings.mlr.press/v97/zhang19a.html
[733]. Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback.
作者: Chicheng Zhang,Alekh Agarwal,Hal Daumé III,John Langford,Sahand Negahban,
連結: http://proceedings.mlr.press/v97/zhang19b.html
[734]. When Samples Are Strategically Selected.
作者: Hanrui Zhang,Yu Cheng,Vincent Conitzer,
連結: http://proceedings.mlr.press/v97/zhang19c.html
[735]. Self-Attention Generative Adversarial Networks.
作者: Han Zhang,Ian J. Goodfellow,Dimitris N. Metaxas,Augustus Odena,
連結: http://proceedings.mlr.press/v97/zhang19d.html
[736]. Circuit-GNN: Graph Neural Networks for Distributed Circuit Design.
作者: Guo Zhang,Hao He,Dina Katabi,
連結: http://proceedings.mlr.press/v97/zhang19e.html
[737]. LatentGNN: Learning Efficient Non-local Relations for Visual Recognition.
作者: Songyang Zhang,Xuming He,Shipeng Yan,
連結: http://proceedings.mlr.press/v97/zhang19f.html
[738]. Neural Collaborative Subspace Clustering.
作者: Tong Zhang,Pan Ji,Mehrtash Harandi,Wen-bing Huang,Hongdong Li,
連結: http://proceedings.mlr.press/v97/zhang19g.html
[739]. Incremental Randomized Sketching for Online Kernel Learning.
作者: Xiao Zhang,Shizhong Liao,
連結: http://proceedings.mlr.press/v97/zhang19h.html
[740]. Bridging Theory and Algorithm for Domain Adaptation.
作者: Yuchen Zhang,Tianle Liu,Mingsheng Long,Michael I. Jordan,
連結: http://proceedings.mlr.press/v97/zhang19i.html
[741]. Adaptive Regret of Convex and Smooth Functions.
作者: Lijun Zhang,Tie-Yan Liu,Zhi-Hua Zhou,
連結: http://proceedings.mlr.press/v97/zhang19j.html
[742]. Random Function Priors for Correlation Modeling.
作者: Aonan Zhang,John W. Paisley,
連結: http://proceedings.mlr.press/v97/zhang19k.html
[743]. Co-Representation Network for Generalized Zero-Shot Learning.
作者: Fei Zhang,Guangming Shi,
連結: http://proceedings.mlr.press/v97/zhang19l.html
[744]. SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning.
作者: Marvin Zhang,Sharad Vikram,Laura Smith,Pieter Abbeel,Matthew J. Johnson,Sergey Levine,
連結: http://proceedings.mlr.press/v97/zhang19m.html
[745]. A Composite Randomized Incremental Gradient Method.
作者: Junyu Zhang,Lin Xiao,
連結: http://proceedings.mlr.press/v97/zhang19n.html
[746]. Fast and Stable Maximum Likelihood Estimation for Incomplete Multinomial Models.
作者: Chenyang Zhang,Guosheng Yin,
連結: http://proceedings.mlr.press/v97/zhang19o.html
[747]. Theoretically Principled Trade-off between Robustness and Accuracy.
作者: Hongyang Zhang,Yaodong Yu,Jiantao Jiao,Eric P. Xing,Laurent El Ghaoui,Michael I. Jordan,
連結: http://proceedings.mlr.press/v97/zhang19p.html
[748]. Learning Novel Policies For Tasks.
作者: Yunbo Zhang,Wenhao Yu,Greg Turk,
連結: http://proceedings.mlr.press/v97/zhang19q.html
[749]. Greedy Orthogonal Pivoting Algorithm for Non-Negative Matrix Factorization.
作者: Kai Zhang,Sheng Zhang,Jun Liu,Jun Wang,Jie Zhang,
連結: http://proceedings.mlr.press/v97/zhang19r.html
[750]. Interpreting Adversarially Trained Convolutional Neural Networks.
作者: Tianyuan Zhang,Zhanxing Zhu,
連結: http://proceedings.mlr.press/v97/zhang19s.html
[751]. Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits.
作者: Martin J. Zhang,James Zou,David Tse,
連結: http://proceedings.mlr.press/v97/zhang19t.html
[752]. On Learning Invariant Representations for Domain Adaptation.
作者: Han Zhao,Remi Tachet des Combes,Kun Zhang,Geoffrey J. Gordon,
連結: http://proceedings.mlr.press/v97/zhao19a.html
[753]. Metric-Optimized Example Weights.
作者: Sen Zhao,Mahdi Milani Fard,Harikrishna Narasimhan,Maya R. Gupta,
連結: http://proceedings.mlr.press/v97/zhao19b.html
[754]. Improving Neural Network Quantization without Retraining using Outlier Channel Splitting.
作者: Ritchie Zhao,Yuwei Hu,Jordan Dotzel,Christopher De Sa,Zhiru Zhang,
連結: http://proceedings.mlr.press/v97/zhao19c.html
[755]. Maximum Entropy-Regularized Multi-Goal Reinforcement Learning.
作者: Rui Zhao,Xudong Sun,Volker Tresp,
連結: http://proceedings.mlr.press/v97/zhao19d.html
[756]. Stochastic Iterative Hard Thresholding for Graph-structured Sparsity Optimization.
作者: Baojian Zhou,Feng Chen,Yiming Ying,
連結: http://proceedings.mlr.press/v97/zhou19a.html
[757]. Lower Bounds for Smooth Nonconvex Finite-Sum Optimization.
作者: Dongruo Zhou,Quanquan Gu,
連結: http://proceedings.mlr.press/v97/zhou19b.html
[758]. Lipschitz Generative Adversarial Nets.
作者: Zhiming Zhou,Jiadong Liang,Yuxuan Song,Lantao Yu,Hongwei Wang,Weinan Zhang,Yong Yu,Zhihua Zhang,
連結: http://proceedings.mlr.press/v97/zhou19c.html
[759]. Toward Understanding the Importance of Noise in Training Neural Networks.
作者: Mo Zhou,Tianyi Liu,Yan Li,Dachao Lin,Enlu Zhou,Tuo Zhao,
連結: http://proceedings.mlr.press/v97/zhou19d.html
[760]. BayesNAS: A Bayesian Approach for Neural Architecture Search.
作者: Hongpeng Zhou,Minghao Yang,Jun Wang,Wei Pan,
連結: http://proceedings.mlr.press/v97/zhou19e.html
[761]. Transferable Clean-Label Poisoning Attacks on Deep Neural Nets.
作者: Chen Zhu,W. Ronny Huang,Hengduo Li,Gavin Taylor,Christoph Studer,Tom Goldstein,
連結: http://proceedings.mlr.press/v97/zhu19a.html
[762]. Improved Dynamic Graph Learning through Fault-Tolerant Sparsification.
作者: Chun Jiang Zhu,Sabine Storandt,Kam-yiu Lam,Song Han,Jinbo Bi,
連結: http://proceedings.mlr.press/v97/zhu19b.html
[763]. Poission Subsampled Rényi Differential Privacy.
作者: Yuqing Zhu,Yu-Xiang Wang,
連結: http://proceedings.mlr.press/v97/zhu19c.html
[764]. Learning Classifiers for Target Domain with Limited or No Labels.
作者: Pengkai Zhu,Hanxiao Wang,Venkatesh Saligrama,
連結: http://proceedings.mlr.press/v97/zhu19d.html
[765]. The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects.
作者: Zhanxing Zhu,Jingfeng Wu,Bing Yu,Lei Wu,Jinwen Ma,
連結: http://proceedings.mlr.press/v97/zhu19e.html
[766]. Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization.
作者: Zhenxun Zhuang,Ashok Cutkosky,Francesco Orabona,
連結: http://proceedings.mlr.press/v97/zhuang19a.html
[767]. Latent Normalizing Flows for Discrete Sequences.
作者: Zachary M. Ziegler,Alexander M. Rush,
連結: http://proceedings.mlr.press/v97/ziegler19a.html
[768]. Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously.
作者: Julian Zimmert,Haipeng Luo,Chen-Yu Wei,
連結: http://proceedings.mlr.press/v97/zimmert19a.html
[769]. Fast Context Adaptation via Meta-Learning.
作者: Luisa M. Zintgraf,Kyriacos Shiarlis,Vitaly Kurin,Katja Hofmann,Shimon Whiteson,
連結: http://proceedings.mlr.press/v97/zintgraf19a.html
[770]. Natural Analysts in Adaptive Data Analysis.
作者: Tijana Zrnic,Moritz Hardt,
連結: http://proceedings.mlr.press/v97/zrnic19a.html