【第8期】(第17屆)ICML2000 Accept-paper List(148篇)

2021-02-21 人工智慧頂會論文速遞

作者:圖靈助手

[1]. Knowledge Representation Issues in Control Knowledge Learning.

作者: Ricardo Aler,Daniel Borrajo,Pedro Isasi,

連結: https://dblp.org/rec/conf/icml/AlerBI00.html

[2]. Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers.

作者: Erin L. Allwein,Robert E. Schapire,Yoram Singer,

連結: https://dblp.org/rec/conf/icml/AllweinSS00.html

[3]. A Nonparametric Approach to Noisy and Costly Optimization.

作者: Brigham S. Anderson,Andrew W. Moore,David Cohn,

連結: https://dblp.org/rec/conf/icml/AndersonMC00.html

[4]. Behavioral Cloning of Student Pilots with Modular Neural Networks.

作者: Charles W. Anderson,Bruce A. Draper,David A. Peterson,

連結: https://dblp.org/rec/conf/icml/AndersonDP00.html

[5]. Combining Multiple Perspectives.

作者: Bikramjit Banerjee,Sandip Debnath,Sandip Sen,

連結: https://dblp.org/rec/conf/icml/BanerjeeDS00.html

[6]. Characterizing Model Erros and Differences.

作者: Stephen D. Bay,Michael J. Pazzani,

連結: https://dblp.org/rec/conf/icml/BayP00.html

[7]. Duality and Geometry in SVM Classifiers.

作者: Kristin P. Bennett,Erin J. Bredensteiner,

連結: https://dblp.org/rec/conf/icml/BennettB00.html

[8]. A Column Generation Algorithm For Boosting.

作者: Kristin P. Bennett,Ayhan Demiriz,John Shawe-Taylor,

連結: https://dblp.org/rec/conf/icml/BennetDS00.html

[9]. Disciple-COA: From Agent Programming to Agent Teaching.

作者: Mihai Boicu,Gheorghe Tecuci,Dorin Marcu,Michael Bowman,Ping Shyr,Florin Ciucu,Cristian Levcovici,

連結: https://dblp.org/rec/conf/icml/BoicuTMBSCL00.html

[10]. Classification of Individuals with Complex Structure.

作者: Antony Francis Bowers,Christophe G. Giraud-Carrier,John W. Lloyd,

連結: https://dblp.org/rec/conf/icml/BowersGL00.html

[11]. Convergence Problems of General-Sum Multiagent Reinforcement Learning.

作者: Michael H. Bowling,

連結: https://dblp.org/rec/conf/icml/Bowling00.html

[12]. Finding Variational Structure in Data by Cross-Entropy Optimization.

作者: Matthew Brand,

連結: https://dblp.org/rec/conf/icml/Brand00.html

[13]. Challenges of the Email Domain for Text Classification.

作者: Jake D. Brutlag,Christopher Meek,

連結: https://dblp.org/rec/conf/icml/BrutlagM00.html

[14]. Query Learning with Large Margin Classifiers.

作者: Colin Campbell,Nello Cristianini,Alexander J. Smola,

連結: https://dblp.org/rec/conf/icml/CampbellCS00.html

[15]. Dimension Reduction Techniques for Training Polynomial Networks.

作者: William M. Campbell,Kari Torkkola,Sreeream V. Balakrishnan,

連結: https://dblp.org/rec/conf/icml/CampbellTB00.html

[16]. Learning to Create Customized Authority Lists.

作者: Huan Chang,David Cohn,Andrew McCallum,

連結: https://dblp.org/rec/conf/icml/ChangCM00.html

[17]. Learning to Select Text Databases with Neural Nets.

作者: Yong S. Choi,Suk I. Yoo,

連結: https://dblp.org/rec/conf/icml/ChoiY00.html

[18]. A Divide and Conquer Approach to Learning from Prior Knowledge.

作者: Eric Chown,Thomas G. Dietterich,

連結: https://dblp.org/rec/conf/icml/ChownD00.html

[19]. Learning in Non-stationary Conditions: A Control Theoretic Approach.

作者: Jefferson A. Coelho Jr.,Roderic A. Grupen,

連結: https://dblp.org/rec/conf/icml/CoelhoG00.html

[20]. Automatically Extracting Features for Concept Learning from the Web.

作者: William W. Cohen,

連結: https://dblp.org/rec/conf/icml/Cohen00.html

[21]. Learning to Probabilistically Identify Authoritative Documents.

作者: David Cohn,Huan Chang,

連結: https://dblp.org/rec/conf/icml/CohnC00.html

[22]. Discriminative Reranking for Natural Language Parsing.

作者: Michael Collins,

連結: https://dblp.org/rec/conf/icml/Collins00.html

[23]. Automatic Identification of Mathematical Concepts.

作者: Simon Colton,Alan Bundy,Toby Walsh,

連結: https://dblp.org/rec/conf/icml/ColtonBW00.html

[24]. On-line Learning for Humanoid Robot Systems.

作者: Jörg Conradt,Gaurav Tevatia,Sethu Vijayakumar,Stefan Schaal,

連結: https://dblp.org/rec/conf/icml/ConradtTVS00.html

[25]. Using Multiple Levels of Learning and Diverse Evidence to Uncover Coordinately Controlled Genes.

作者: Mark W. Craven,David Page,Jude W. Shavlik,Joseph Bockhorst,Jeremy D. Glasner,

連結: https://dblp.org/rec/conf/icml/CravenPSBG00.html

[26]. Fixed Points of Approximate Value Iteration and Temporal-Difference Learning.

作者: Daniela Pucci de Farias,Benjamin Van Roy,

連結: https://dblp.org/rec/conf/icml/FariasR00.html

[27]. Hidden Strengths and Limitations: An Empirical Investigation of Reinforcement Learning.

作者: Gerald DeJong,

連結: https://dblp.org/rec/conf/icml/DeJong00.html

[28]. Bayesian Averaging of Classifiers and the Overfitting Problem.

作者: Pedro M. Domingos,

連結: https://dblp.org/rec/conf/icml/Domingos00.html

[29]. A Unifeid Bias-Variance Decomposition and its Applications.

作者: Pedro M. Domingos,

連結: https://dblp.org/rec/conf/icml/Domingos00a.html

[30]. Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria.

作者: Chris Drummond,Robert C. Holte,

連結: https://dblp.org/rec/conf/icml/DrummondH00.html

[31]. Feature Subset Selection and Order Identification for Unsupervised Learning.

作者: Jennifer G. Dy,Carla E. Brodley,

連結: https://dblp.org/rec/conf/icml/DyB00.html

[32]. Anomaly Detection over Noisy Data using Learned Probability Distributions.

作者: Eleazar Eskin,

連結: https://dblp.org/rec/conf/icml/Eskin00.html

[33]. Ideal Theory Refinement under Object Identity.

作者: Floriana Esposito,Nicola Fanizzi,Stefano Ferilli,Giovanni Semeraro,

連結: https://dblp.org/rec/conf/icml/EspositoFFS00.html

[34]. Bounds on the Generalization Performance of Kernel Machine Ensembles.

作者: Theodoros Evgeniou,Luis Pérez-Breva,Massimiliano Pontil,Tomaso A. Poggio,

連結: https://dblp.org/rec/conf/icml/EvgeniouPPP00.html

[35]. Online Ensemble Learning: An Empirical Study.

作者: Alan Fern,Robert Givan,

連結: https://dblp.org/rec/conf/icml/FernG00.html

[36]. Learning Subjective Functions with Large Margins.

作者: Claude-Nicolas Fiechter,Seth Rogers,

連結: https://dblp.org/rec/conf/icml/FiechterR00.html

[37]. Relative Loss Bounds for Temporal-Difference Learning.

作者: Jürgen Forster,Manfred K. Warmuth,

連結: https://dblp.org/rec/conf/icml/ForsterW00.html

[38]. Using Error-Correcting Codes for Text Classification.

作者: Rayid Ghani,

連結: https://dblp.org/rec/conf/icml/Ghani00.html

[39]. Analyzing Relational Learning in the Phase Transition Framework.

作者: Attilio Giordana,Lorenza Saitta,Michèle Sebag,Marco Botta,

連結: https://dblp.org/rec/conf/icml/GiordanaSSB00.html

[40]. Learning Multiple Models for Reward Maximization.

作者: Dani Goldberg,Maja J. Mataric,

連結: https://dblp.org/rec/conf/icml/GoldbergM00.html

[41]. Enhancing Supervised Learning with Unlabeled Data.

作者: Sally A. Goldman,Yan Zhou,

連結: https://dblp.org/rec/conf/icml/GoldmanZ00.html

[42]. Learning Filaments.

作者: Geoffrey J. Gordon,Andrew W. Moore,

連結: https://dblp.org/rec/conf/icml/GordonM00.html

[43]. Localizing Policy Gradient Estimates to Action Transition.

作者: Gregory Z. Grudic,Lyle H. Ungar,

連結: https://dblp.org/rec/conf/icml/GrudicU00.html

[44]. Learning Curved Multinomial Subfamilies for Natural Language Processing and Information Retrieval.

作者: Keith B. Hall,Thomas Hofmann,

連結: https://dblp.org/rec/conf/icml/HallH00.html

[45]. Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning.

作者: Mark A. Hall,

連結: https://dblp.org/rec/conf/icml/Hall00.html

[46]. Empirical Bayes for Learning to Learn.

作者: Tom Heskes,

連結: https://dblp.org/rec/conf/icml/Heskes00.html

[47]. Meta-Learning for Phonemic Annotation of Corpora.

作者: Véronique Hoste,Walter Daelemans,Erik F. Tjong Kim Sang,Steven Gillis,

連結: https://dblp.org/rec/conf/icml/HosteDSG00.html

[48]. An Integrated Connectionist Approach to Reinforcement Learning for Robotic Control.

作者: Dean F. Hougen,Maria L. Gini,James R. Slagle,

連結: https://dblp.org/rec/conf/icml/HougenGS00.html

[49]. Data as Ensembles of Records: Representation and Comparison.

作者: Nicholas R. Howe,

連結: https://dblp.org/rec/conf/icml/Howe00.html

[50]. Why Discretization Works for Naive Bayesian Classifiers.

作者: Chun-Nan Hsu,Hung-Ju Huang,Tzu-Tsung Wong,

連結: https://dblp.org/rec/conf/icml/HsuHW00.html

[51]. Experimental Results on Q-Learning for General-Sum Stochastic Games.

作者: Junling Hu,Michael P. Wellman,

連結: https://dblp.org/rec/conf/icml/HuW00.html

[52]. Learning Declarative Control Rules for Constraint-BAsed Planning.

作者: Yi-Cheng Huang,Bart Selman,Henry A. Kautz,

連結: https://dblp.org/rec/conf/icml/HuangSK00.html

[53]. Approximate Dimension Equalization in Vector-based Information Retrieval.

作者: Fan Jiang,Michael L. Littman,

連結: https://dblp.org/rec/conf/icml/JiangL00.html

[54]. Estimating the Generalization Performance of an SVM Efficiently.

作者: Thorsten Joachims,

連結: https://dblp.org/rec/conf/icml/Joachims00.html

[55]. State-based Classification of Finger Gestures from Electromyographic Signals.

作者: Peter Ju,Leslie Pack Kaelbling,Yoram Singer,

連結: https://dblp.org/rec/conf/icml/JuKS00.html

[56]. A Universal Generalization for Temporal-Difference Learning Using Haar Basis Functions.

作者: Susumu Katayama,Hajime Kimura,Shigenobu Kobayashi,

連結: https://dblp.org/rec/conf/icml/KatayamaKK00.html

[57]. Pseudo-convergent Q-Learning by Competitive Pricebots.

作者: Jeffrey O. Kephart,Gerald Tesauro,

連結: https://dblp.org/rec/conf/icml/KephartT00.html

[58]. Learning Horn Expressions with LogAn-H.

作者: Roni Khardon,

連結: https://dblp.org/rec/conf/icml/Khardon00.html

[59]. Learning Bayesian Networks for Diverse and Varying numbers of Evidence Sets.

作者: Zu Whan Kim,Ramakant Nevatia,

連結: https://dblp.org/rec/conf/icml/KimN00.html

[60]. Detecting Concept Drift with Support Vector Machines.

作者: Ralf Klinkenberg,Thorsten Joachims,

連結: https://dblp.org/rec/conf/icml/KlinkenbergJ00.html

[61]. A Dynamic Adaptation of AD-trees for Efficient Machine Learning on Large Data Sets.

作者: Paul Komarek,Andrew W. Moore,

連結: https://dblp.org/rec/conf/icml/KomarekM00.html

[62]. Voting Nearest-Neighbor Subclassifiers.

作者: Miroslav Kubat,Martin Cooperson Jr.,

連結: https://dblp.org/rec/conf/icml/KubatC00.html

[63]. Algorithm Selection using Reinforcement Learning.

作者: Michail G. Lagoudakis,Michael L. Littman,

連結: https://dblp.org/rec/conf/icml/LagoudakisL00.html

[64]. Data Reduction Techniques for Instance-Based Learning from Human/Computer Interface Data.

作者: Terran Lane,Carla E. Brodley,

連結: https://dblp.org/rec/conf/icml/LaneB00.html

[65]. Version Space Algebra and its Application to Programming by Demonstration.

作者: Tessa A. Lau,Pedro M. Domingos,Daniel S. Weld,

連結: https://dblp.org/rec/conf/icml/LauDW00.html

[66]. An Algorithm for Distributed Reinforcement Learning in Cooperative Multi-Agent Systems.

作者: Martin Lauer,Martin A. Riedmiller,

連結: https://dblp.org/rec/conf/icml/LauerR00.html

[67]. A Bayesian Approach to Temporal Data Clustering using Hidden Markov Models.

作者: Cen Li,Gautam Biswas,

連結: https://dblp.org/rec/conf/icml/LiB00.html

[68]. The Space of Jumping Emerging Patterns and Its Incremental Maintenance Algorithms.

作者: Jinyan Li,Kotagiri Ramamohanarao,Guozhu Dong,

連結: https://dblp.org/rec/conf/icml/LiRD00.html

[69]. Selective Voting for Perception-like Online Learning.

作者: Yi Li,

連結: https://dblp.org/rec/conf/icml/Li00.html

[70]. An Initial Study of an Adaptive Hierarchical Vision System.

作者: Marcus A. Maloof,

連結: https://dblp.org/rec/conf/icml/Maloof00.html

[71]. Efficient Mining from Large Databases by Query Learning.

作者: Hiroshi Mamitsuka,Naoki Abe,

連結: https://dblp.org/rec/conf/icml/MamitsukaA00.html

[72]. Bootstrap Methods for the Cost-Sensitive Evaluation of Classifiers.

作者: Dragos D. Margineantu,Thomas G. Dietterich,

連結: https://dblp.org/rec/conf/icml/MargineantuD00.html

[73]. Maximum Entropy Markov Models for Information Extraction and Segmentation.

作者: Andrew McCallum,Dayne Freitag,Fernando C. N. Pereira,

連結: https://dblp.org/rec/conf/icml/McCallumFP00.html

[74]. Mixtures of Factor Analyzers.

作者: Geoffrey J. McLachlan,David Peel,

連結: https://dblp.org/rec/conf/icml/McLachlanP00.html

[75]. "Boosting' a Positive-Data-Only Learner.

作者: Andrew R. Mitchell,

連結: https://dblp.org/rec/conf/icml/Mitchell00.html

[76]. Machine Learning for Subproblem Selection.

作者: Robert Moll,Theodore J. Perkins,Andrew G. Barto,

連結: https://dblp.org/rec/conf/icml/MollPB00.html

[77]. Acquisition of Stand-up Behavior by a Real Robot using Hierarchical Reinforcement Learning.

作者: Jun Morimoto,Kenji Doya,

連結: https://dblp.org/rec/conf/icml/MorimotoD00.html

[78]. Learning Chomsky-like Grammars for Biological Sequence Families.

作者: Stephen Muggleton,Christopher H. Bryant,Ashwin Srinivasan,

連結: https://dblp.org/rec/conf/icml/MuggletonBS00.html

[79]. Complete Cross-Validation for Nearest Neighbor Classifiers.

作者: Matthew D. Mullin,Rahul Sukthankar,

連結: https://dblp.org/rec/conf/icml/MullinS00.html

[80]. Rates of Convergence for Variable Resolution Schemes in Optimal Control.

作者: Rémi Munos,Andrew W. Moore,

連結: https://dblp.org/rec/conf/icml/MunosM00.html

[81]. A Boosting Approach to Topic Spotting on Subdialogues.

作者: Kary L. Myers,Michael J. Kearns,Satinder P. Singh,Marilyn A. Walker,

連結: https://dblp.org/rec/conf/icml/MyersKSW00.html

[82]. Algorithms for Inverse Reinforcement Learning.

作者: Andrew Y. Ng,Stuart J. Russell,

連結: https://dblp.org/rec/conf/icml/NgR00.html

[83]. Learning Probabilistic Models for Decision-Theoretic Navigation of Mobile Robots.

作者: Daniel Nikovski,Illah R. Nourbakhsh,

連結: https://dblp.org/rec/conf/icml/NikovskiN00.html

[84]. An Approach to Data Reduction and Clustering with Theoretical Guarantees.

作者: Partha Niyogi,Narendra Karmarkar,

連結: https://dblp.org/rec/conf/icml/NiyogiK00.html

[85]. Comparing the Minimum Description Length Principle and Boosting in the Automatic Analysis of Discourse.

作者: Tadashi Nomoto,Yuji Matsumoto,

連結: https://dblp.org/rec/conf/icml/NomotoM00.html

[86]. Generalized Average-Case Analyses of the Nearest Neighbor Algorithm.

作者: Seishi Okamoto,Nobuhiro Yugami,

連結: https://dblp.org/rec/conf/icml/OkamotoY00.html

[87]. Learning Distributed Representations by Mapping Concepts and Relations into a Linear Space.

作者: Alberto Paccanaro,Geoffrey E. Hinton,

連結: https://dblp.org/rec/conf/icml/PaccanaroH00.html

[88]. Clustering the Users of Large Web Sites into Communities.

作者: Georgios Paliouras,Christos Papatheodorou,Vangelis Karkaletsis,Constantine D. Spyropoulos,

連結: https://dblp.org/rec/conf/icml/PaliourasPKS00.html

[89]. X-means: Extending K-means with Efficient Estimation of the Number of Clusters.

作者: Dan Pelleg,Andrew W. Moore,

連結: https://dblp.org/rec/conf/icml/PellegM00.html

[90]. A Normative Examination of Ensemble Learning Algorithms.

作者: David M. Pennock,Pedrito Maynard-Reid II,C. Lee Giles,Eric Horvitz,

連結: https://dblp.org/rec/conf/icml/PennockMGH00.html

[91]. Meta-Learning by Landmarking Various Learning Algorithms.

作者: Bernhard Pfahringer,Hilan Bensusan,Christophe G. Giraud-Carrier,

連結: https://dblp.org/rec/conf/icml/PfahringerBG00.html

[92]. Constructive Feature Learning and the Development of Visual Expertise.

作者: Justus H. Piater,Roderic A. Grupen,

連結: https://dblp.org/rec/conf/icml/PiaterG00.html

[93]. Eligibility Traces for Off-Policy Policy Evaluation.

作者: Doina Precup,Richard S. Sutton,Satinder P. Singh,

連結: https://dblp.org/rec/conf/icml/PrecupSS00.html

[94]. Shaping in Reinforcement Learning by Changing the Physics of the Problem.

作者: Jette Randløv,

連結: https://dblp.org/rec/conf/icml/Randlov00.html

[95]. Combining Reinforcement Learning with a Local Control Algorithm.

作者: Jette Randløv,Andrew G. Barto,Michael T. Rosenstein,

連結: https://dblp.org/rec/conf/icml/RandlovBR00.html

[96]. Adaptive Resolution Model-Free Reinforcement Learning: Decision Boundary Partitioning.

作者: Stuart I. Reynolds,

連結: https://dblp.org/rec/conf/icml/Reynolds00.html

[97]. Knowledge Propagation in Model-based Reinforcement Learning Tasks.

作者: Corinna Richter,Jörg Stachowiak,

連結: https://dblp.org/rec/conf/icml/RichterS00.html

[98]. Image Color Constancy Using EM and Cached Statistics.

作者: Charles R. Rosenberg,

連結: https://dblp.org/rec/conf/icml/Rosenberg00.html

[99]. Learning to Fly: An Application of Hierarchical Reinforcement Learning.

作者: Malcolm R. K. Ryan,Mark D. Reid,

連結: https://dblp.org/rec/conf/icml/RyanR00.html

[100]. Direct Bayes Point Machines.

作者: Matthias Rychetsky,John Shawe-Taylor,Manfred Glesner,

連結: https://dblp.org/rec/conf/icml/RychetskySG00.html

[101]. Achieving Efficient and Cognitively Plausible Learning in Backgammon.

作者: Scott Sanner,John R. Anderson,Christian Lebiere,Marsha C. Lovett,

連結: https://dblp.org/rec/conf/icml/SannerALL00.html

[102]. Predicting the Generalization Performance of Cross Validatory Model Selection Criteria.

作者: Tobias Scheffer,

連結: https://dblp.org/rec/conf/icml/Scheffer00.html

[103]. Less is More: Active Learning with Support Vector Machines.

作者: Greg Schohn,David Cohn,

連結: https://dblp.org/rec/conf/icml/SchohnC00.html

[104]. An Adaptive Regularization Criterion for Supervised Learning.

作者: Dale Schuurmans,Finnegan Southey,

連結: https://dblp.org/rec/conf/icml/SchuurmansS00.html

[105]. Instance Pruning as an Information Preserving Problem.

作者: Marc Sebban,Richard Nock,

連結: https://dblp.org/rec/conf/icml/SebbanN00.html

[106]. Incremental Learning in SwiftFile.

作者: Richard Segal,Jeffrey O. Kephart,

連結: https://dblp.org/rec/conf/icml/SegalK00.html

[107]. Using Knowledge to Speed Learning: A Comparison of Knowledge-based Cascade-correlation and Multi-task Learning.

作者: Thomas R. Shultz,François Rivest,

連結: https://dblp.org/rec/conf/icml/ShultzR00.html

[108]. Obtaining Simplified Rule Bases by Hybrid Learning.

作者: Ricardo Bezerra de Andrade e Silva,Teresa Bernarda Ludermir,

連結: https://dblp.org/rec/conf/icml/SilvaL00.html

[109]. Learning to Predict Performance from Formula Modeling and Training Data.

作者: Bryan Singer,Manuela M. Veloso,

連結: https://dblp.org/rec/conf/icml/SingerV00.html

[110]. Discovering Test Set Regularities in Relational Domains.

作者: Seán Slattery,Tom M. Mitchell,

連結: https://dblp.org/rec/conf/icml/SlatteryM00.html

[111]. Practical Reinforcement Learning in Continuous Spaces.

作者: William D. Smart,Leslie Pack Kaelbling,

連結: https://dblp.org/rec/conf/icml/SmartK00.html

[112]. Sparse Greedy Matrix Approximation for Machine Learning.

作者: Alexander J. Smola,Bernhard Schölkopf,

連結: https://dblp.org/rec/conf/icml/SmolaS00.html

[113]. Using Learning by Discovery to Segment Remotely Sensed Images.

作者: Leen-Kiat Soh,Costas Tsatsoulis,

連結: https://dblp.org/rec/conf/icml/SohT00.html

[114]. Multi-agent Q-learning and Regression Trees for Automated Pricing Decisions.

作者: Manu Sridharan,Gerald Tesauro,

連結: https://dblp.org/rec/conf/icml/SridharanT00.html

[115]. TPOT-RL Applied to Network Routing.

作者: Peter Stone,

連結: https://dblp.org/rec/conf/icml/Stone00.html

[116]. A Bayesian Framework for Reinforcement Learning.

作者: Malcolm J. A. Strens,

連結: https://dblp.org/rec/conf/icml/Strens00.html

[117]. Feature Selection and Incremental Learning of Probabilistic Concept Hierarchies.

作者: Luis Talavera,

連結: https://dblp.org/rec/conf/icml/Talavera00.html

[118]. Efficient Learning Through Evolution: Neural Programming and Internal Reinforcement.

作者: Astro Teller,Manuela M. Veloso,

連結: https://dblp.org/rec/conf/icml/TellerV00.html

[119]. Selection of Support Vector Kernel Parameters for Improved Generalization.

作者: Loo-Nin Teow,Kia-Fock Loe,

連結: https://dblp.org/rec/conf/icml/TeowL00.html

[120]. Probabilistic DFA Inference using Kullback-Leibler Divergence and Minimality.

作者: Franck Thollard,Pierre Dupont,Colin de la Higuera,

連結: https://dblp.org/rec/conf/icml/ThollardDH00.html

[121]. A Comparative Study of Cost-Sensitive Boosting Algorithms.

作者: Kai Ming Ting,

連結: https://dblp.org/rec/conf/icml/Ting00.html

[122]. Discovering the Structure of Partial Differential Equations from Example Behaviour.

作者: Ljupco Todorovski,Saso Dzeroski,Ashwin Srinivasan,Jonathan P. Whiteley,David Gavaghan,

連結: https://dblp.org/rec/conf/icml/TodorovskiDSWG00.html

[123]. Support Vector Machine Active Learning with Application sto Text Classification.

作者: Simon Tong,Daphne Koller,

連結: https://dblp.org/rec/conf/icml/TongK00.html

[124]. Partial Linear Trees.

作者: Luís Torgo,

連結: https://dblp.org/rec/conf/icml/Torgo00.html

[125]. Mutual Information in Learning Feature Transformations.

作者: Kari Torkkola,William M. Campbell,

連結: https://dblp.org/rec/conf/icml/TorkkolaC00.html

[126]. Local Expert Autoassociators for Anomaly Detection.

作者: Geoffrey G. Towell,

連結: https://dblp.org/rec/conf/icml/Towell00.html

[127]. Learning Priorities From Noisy Examples.

作者: Geoffrey G. Towell,Thomas Petsche,Michael R. Miller,

連結: https://dblp.org/rec/conf/icml/TowellPM00.html

[128]. Hierarchical Unsupervised Learning.

作者: Shivakumar Vaithyanathan,Byron Dom,

連結: https://dblp.org/rec/conf/icml/VaithyanathanD00.html

[129]. Model Selection Criteria for Learning Belief Nets: An Empirical Comparison.

作者: Tim Van Allen,Russell Greiner,

連結: https://dblp.org/rec/conf/icml/AllenG00.html

[130]. Unpacking Multi-valued Symbolic Features and Classes in Memory-Based Language Learning.

作者: Antal van den Bosch,Jakub Zavrel,

連結: https://dblp.org/rec/conf/icml/BoschZ00.html

[131]. Bootstrapping Syntax and Recursion using Alginment-Based Learning.

作者: Menno van Zaanen,

連結: https://dblp.org/rec/conf/icml/Zaanen00.html

[132]. An Evolutionary Approach to Evidence-Based Learning of Deterministic Finite Automata.

作者: Stefan Veeser,

連結: https://dblp.org/rec/conf/icml/Veeser00.html

[133]. Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional Space.

作者: Sethu Vijayakumar,Stefan Schaal,

連結: https://dblp.org/rec/conf/icml/VijayakumarS00.html

[134]. A Quantification of Distance Bias Between Evaluation Metrics In Classification.

作者: Ricardo Vilalta,Daniel Oblinger,

連結: https://dblp.org/rec/conf/icml/VilaltaO00.html

[135]. Discovering Homogeneous Regions in Spatial Data through Competition.

作者: Slobodan Vucetic,Zoran Obradovic,

連結: https://dblp.org/rec/conf/icml/VuceticO00.html

[136]. Clustering with Instance-level Constraints.

作者: Kiri Wagstaff,Claire Cardie,

連結: https://dblp.org/rec/conf/icml/WagstaffC00.html

[137]. Using Natural Language Processing and discourse Features to Identify Understanding Errors.

作者: Marilyn A. Walker,Jeremy H. Wright,Irene Langkilde,

連結: https://dblp.org/rec/conf/icml/WalkerWL00.html

[138]. Solving the Multiple-Instance Problem: A Lazy Learning Approach.

作者: Jun Wang,Jean-Daniel Zucker,

連結: https://dblp.org/rec/conf/icml/WnagZ00.html

[139]. Enhancing the Plausibility of Law Equation Discovery.

作者: Takashi Washio,Hiroshi Motoda,Yuji Niwa,

連結: https://dblp.org/rec/conf/icml/WashioMN00.html

[140]. Lightweight Rule Induction.

作者: Sholom M. Weiss,Nitin Indurkhya,

連結: https://dblp.org/rec/conf/icml/WeissI00.html

[141]. Classification with Multiple Latent Variable Models using Maximum Entropy Discrimination.

作者: Machiel Westerdijk,Wim Wiegerinck,

連結: https://dblp.org/rec/conf/icml/WesterdijkW00.html

[142]. Multi-Agent Reinforcement Leraning for Traffic Light Control.

作者: Marco A. Wiering,

連結: https://dblp.org/rec/conf/icml/Wiering00.html

[143]. The Effect of the Input Density Distribution on Kernel-based Classifiers.

作者: Christopher K. I. Williams,Matthias W. Seeger,

連結: https://dblp.org/rec/conf/icml/WilliamsS00.html

[144]. Combining Multiple Learning Strategies for Effective Cross Validation.

作者: Yiming Yang,Tom Ault,Thomas Pierce,

連結: https://dblp.org/rec/conf/icml/YangAP00.html

[145]. Linear Discriminant Trees.

作者: Olcay Taner Yildiz,Ethem Alpaydin,

連結: https://dblp.org/rec/conf/icml/YildizA00.html

[146]. Improving Short-Text Classification using Unlabeled Data for Classification Problems.

作者: Sarah Zelikovitz,Haym Hirsh,

連結: https://dblp.org/rec/conf/icml/ZelikovitzH00.html

[147]. Induction of Concept Hierarchies from Noisy Data.

作者: Blaz Zupan,Ivan Bratko,Marko Bohanec,Janez Demsar,

連結: https://dblp.org/rec/conf/icml/ZupanBBD00.html

[148]. Crafting Papers on Machine Learning.

作者: Pat Langley,

連結: https://dblp.org/rec/conf/icml/Langley00.html

相關焦點