PRL導讀 2020,125(26) 第5-7模塊

2021-01-18 京師物理


1 K以下的離子-分子反應:增強了離子-偶極反應He++CH3F的反應速率

本文在合束裝置中研究了當碰撞能量Ecoll在0到kB ⋅10K時,He +與CH3F主要形成CH2+ 和CHF +的反應。為了避免離子被雜散電場加熱,在一個高激發的裡德堡電子的軌道內觀察該反應。利用裡德堡-斯塔克減速器和偏轉器,將CH3F與主量子數n為30和35的 He(n)和超音速裡德堡原子束合併,並對其相對速度進行調諧,使能量解析度達到150mk。當Ecoll/kB=1  K以下時可觀察到反應速率強烈增強。實驗結果用一個絕熱捕獲模型來解釋,該模型解釋了極性CH3F分子在接近He+離子時的斯塔克效應對其狀態依賴性取向的影響。在低碰撞能量下,反應速率的提高主要歸因於在J = 1、K M = 1高場尋找態中的對位CH3F分子,在6 K旋轉溫度下,約佔總粒子數的8%。


Ion-Molecule Reactions below 1 K: Strong Enhancement of the Reaction Rate of the Ion-Dipole Reaction He+ + CH3F

Valentina Zhelyazkova, et al.

Phys. Rev. Lett. 125, 263401 (2020)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.263401

相關焦點

  • PRL導讀-2020年125卷26期 第1-4模塊
    High Energy Phys. 11 (2020) 106] together with the boundary-to-bound dictionary developed in [G. Kälin and R. A. Porto, J. High Energy Phys. 01 (2020) 072; J. High Energy Phys. 02 (2020) 120.].
  • PRL導讀-2020年125卷14期
    In addition, the first evidence for the D+ →K+ ω decay, with a statistical significance of 3.3σ, is presented and the branching fraction is measured to be B(D+ →K+ ω)=(5.7−2.1+2.5stat±0.2syst)×10−5.
  • PRL導讀-2020年125卷06期
    09-7太陽能電池和發光二極體中光子回收的量化: 吸收和發射始終是關鍵Photon recycling has received increased attention in recent years following its observation in halide perovskites.
  • PRL導讀-2020年125卷11期
    02-7具有熱運動學的Sunyaev-Zel'dovich效應的宇宙學 ComptonLett. 125, 111301 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.111301
  • PRL導讀-2020年125卷03期
    Lett. 125, 031801 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.031801
  • PRL導讀-2020年125卷04期
    Lett. 125, 040401 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.040401
  • PRL導讀-2020年125卷23期
    Lett. 125, 236403 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.236403
  • PRL導讀-2020年125卷24期
    Lett. 125, 241602 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.241602
  • PRL導讀-2020年125卷18期
    Lett. 125, 187202 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.187202
  • 【物青|薦讀】PRL導讀-2020年125卷14期
    In addition, the first evidence for the D+ →K+ ω decay, with a statistical significance of 3.3σ, is presented and the branching fraction is measured to be B(D+ →K+ ω)=(5.7−2.1+2.5stat±0.2syst)×10−5.
  • PRL導讀-2018年120卷13期編輯推薦文章
    通過檢查總量為86.3 kg yr的TeO2 的輻射(有效能量解析度為半高寬(7.7±0.5) keV,感興趣區域的本底為(0.015±0.002) counts/(keV kg yr)),他們沒有找到無中微子雙beta衰變的證據。
  • PRL導讀-2020年125卷05期[07-3][09-1][09-3]第一性原理計算
    09-7繞過人工Kagome冰中的動力學凍結Spin liquids are correlated, disordered states of matter that fluctuate even at low temperatures.
  • PRL導讀-2020年124卷06期
    Based on our achieved signal-to-noise ratio, we estimate that singlet-triplet single-shot readout with an average fidelity of 99.7% could be performed in 1μs, well below the requirements for fault-tolerant
  • PRL導讀-2020年124卷08期
    Lett. 124, 080502 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.080502
  • PRL導讀-2020年124卷11期
    By analyzing the cross sections for the four subprocesses, K+(1460)K−, K1+(1400)K−, K1+(1270)K−, and K*+(892)K*−(892), a structure with mass M=(2126.5±16.8±12.4) MeV/c2 and width Γ=(106.9±32.1±28.1) MeV
  • PRL導讀-2018年121卷26期
    Lett. 121, 261602 (2018)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.261602
  • JAC 2020 年第 9 卷第 5 期導讀
    Ceram., 2020, 9 (5): 517 - 534Abstract: Inspired by the micro-nano structure on the surface of biological materials or living organisms, micro-nano structure has been
  • PRL導讀-2019年123卷15期
    系統中觀測到新的共振We report the observation of a new structure inthe Λb0π+π− spectrum using the full LHCb data set of pp collisions, correspondingto an integrated luminosity of 9 fb−1, collected at s=7,
  • PRL導讀-2018年121卷17期
    最近實驗上在實驗室系質子束流能量 Ep=156.2,189.5和259.7 keV處觀測並確認了3個新的共振態的存在。然而,由於非共振過程以及在Ep=71和105keV處兩個潛在的共振態的影響,反應速率仍然具有顯著的不確定性。F. Ferraro等人測量得到了具有高統計性以及低本底的新的22Ne (p,γ)23Na反應數據。
  • PRL導讀-2019年123卷06期
    These bunches were separated by 0.7–1.5 ms, with a duration of ≪ 1 ms each.Lett. 123, 061103 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.061103