PRL導讀-2020年125卷11期

2021-02-07 京師物理

02-7

具有熱運動學的Sunyaev-Zel'dovich效應的宇宙學

Compton scattering of the cosmic microwave background (CMB) from hot ionized gas produces a range of effects, and the leading order effects are the kinetic and thermal Sunyaev Zel』dovich (kSZ and tSZ) effects. In the near future, CMB surveys will provide the precision to probe beyond the leading order effects. In this Letter, we study the cosmological information content of the next order term which combines the tSZ and kSZ effects, hereafter called the thermal-kinetic Sunyaev Zel』dovich (tkSZ) effect. As the tkSZ effect has the same velocity dependence as the kSZ effect, it will also have many of the useful properties of the kSZ effect. However, it also has its own, unique spectral dependence, which allows it to be isolated from all other CMB signals.We show that with currently envisioned CMB missions the tkSZ effect can be detected and can be used to reconstruct large scale velocity fields, with no appreciable bias from either the kSZ effect or other extragalactic foregrounds. Furthermore, since the tkSZ effect arises from the well-studied pressure of ionized gas, rather than the gas number density as in the kSZ effect, the degeneracy due to uncertain gas physics will be significantly reduced. Finally, for a very low-noise experiment the tkSZ effect will be measurable at higher precision than the kSZ effect.


Cosmology with the Thermal-Kinetic Sunyaev-Zel』dovich Effect

William Coulton, et al.

Phys. Rev. Lett. 125, 111301 (2020)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.111301

相關焦點

  • PRL導讀-2020年125卷06期
    Lett. 125, 067401 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.067401
  • PRL導讀-2020年125卷03期
    Lett. 125, 031801 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.031801
  • PRL導讀-2020年125卷04期
    Lett. 125, 040401 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.040401
  • PRL導讀-2020年125卷23期
    Lett. 125, 236403 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.236403
  • PRL導讀-2020年125卷24期
    Lett. 125, 241602 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.241602
  • PRL導讀-2018年120卷13期編輯推薦文章
    Lett. 120, 138301 (2018)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.138301其他相關導讀PRL導讀-2018年120卷12期PRL導讀-2018年120卷11期PRL導讀-2018年120卷10期PRL
  • PRL導讀-2020年125卷18期
    Lett. 125, 187202 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.187202
  • PRL導讀-2020年125卷14期
    Lett. 125, 141802 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.141802
  • PRL導讀-2020年125卷26期 第1-4模塊
    High Energy Phys. 11 (2020) 106] together with the boundary-to-bound dictionary developed in [G. Kälin and R. A. Porto, J. High Energy Phys. 01 (2020) 072; J. High Energy Phys. 02 (2020) 120.].
  • 【物青|薦讀】PRL導讀-2020年125卷14期
    Lett. 125, 141802 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.141802
  • PRL導讀-2020年124卷11期
    Lett. 124, 112001 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.112001
  • PRL導讀-2020年125卷05期[07-3][09-1][09-3]第一性原理計算
    Lett. 125, 057203 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.057203
  • PRL導讀-2020年124卷08期
    Lett. 124, 080502 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.080502
  • PRL導讀-2020年124卷06期
    Lett. 124, 067701 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.067701
  • PRL導讀 2020,125(26) 第5-7模塊
    Lett. 125, 263401 (2020)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.263401
  • PRL導讀-2021年126卷04期
    The possible NANOGrav signal would correspond to a string tension Gμ ∈(4 × 10−11, 10−10) at the 68% confidence level, with a different frequency dependence from supermassive black hole mergers.
  • PRL導讀-2018年121卷14期
    16O中1-能級的約化α寬度γ11對於確定截面尤其重要。γ11的振幅可以通過亞庫倫α反應或者16N的β緩發α衰變來確定,但是後一種方法當前尚無足夠精確的β衰變分支比予以限制。本文中,Kirsebom等人報導了改善了的束縛1-能級以及β緩發α發射的的分支比,其數值分別為[bβ,11=(5.02±0.10)×10-2]和[bβα=(5.02±0.10)×10-2]。
  • PRL導讀-2018年121卷23期
    在高級LIGO第一次觀測運行中尋找亞太陽質量超緻密雙星作者使用2015年9月12日至2016年1月19日期間的數據,展示了高級LIGO和高級Virgo第一次搜索質量在0.2M⊙-1.0M⊙之間的超緻密雙星系統。
  • PRL導讀-2019年122卷10期
    Lett. 122, 103601 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.103601
  • PRL導讀-2019年122卷16期
    Lett. 122, 167002 (2019)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.167002