2019鈣鈦礦和疊層電池與組件論壇
Perovskite and Tandem Cell and Module Forum 2019
——30%以上效率太陽電池的低成本量產之路
——30% Efficiency Solar Cell Low-cost Mass Production Road
會議背景
鈣鈦礦電池是極具潛力的下一代光伏發電技術,並且正在快速走向市場。2018年7月,纖納光電鈣鈦礦組件轉換效率提升至17.9%,同年12月,牛津光伏鈣鈦礦/矽基疊層電池實現了28%的光電轉化效率。2019年2月,協鑫納米已建成10兆瓦級別大面積鈣鈦礦組件中試生產線,並已開始100兆瓦量產生產線的建設工作,計劃於2020年實現鈣鈦礦光伏組件的商業化生產。
鈣鈦礦最初是指含鈣、鈦和氧的礦物,於1839年首次被發現。此後,鈣鈦礦指代一大類具有與此類礦物相同晶體結構的化合物。其化學成分簡寫為ABX3,其中A通常代表有機陽離子,B代表金屬離子(如Pb2+或Sn2+),X代表滷素陰離子(如Cl-或Br-)。
與晶矽太陽電池需要高純矽相比,鈣鈦礦電池只需材料的純度達到90%,而且採用的低溫工藝可以降低能耗,單位面積鈣鈦礦組件消耗的鈣鈦礦材料也遠低於晶矽組件。因此鈣鈦礦電池及組件具有極大的成本降低潛力。公開信息顯示,當鈣鈦礦組件產能達到1GW以上時,其成本有望降低到0.7元/W。
隨著技術走向成熟,晶矽電池正在趨於其理論效率極限,進一步提升至27%以上的電池效率成本高昂。而鈣鈦礦電池與晶矽電池組成疊層電池,可以實現30%以上的光電轉換效率。採用晶體矽作為底電池和鈣鈦礦作為頂電池的疊層電池是一項在技術和經濟上均可行的選項,而且雙結疊層電池技術與雙面發電技術相容。
鈣鈦礦電池面臨的挑戰主要是穩定性和規模化製造,以及相關測試標準和測試技術尚未完善。產業鏈上的企業正在努力行動,以期儘快完善鈣鈦礦電池和組件技術。賀利氏公布其正在開發一系列產品,如低溫銀漿、PEDOT:PSS和導電膠,助力鈣鈦礦疊層電池成為新一代太陽能電池技術。
2019鈣鈦礦和疊層電池與組件論壇將於12月12日召開。會議將探討全球與中國光伏行業展望與鈣鈦礦技術前景,大面積鈣鈦礦電池與組件製造工藝——塗布工藝、真空工藝、雷射工藝與金屬化工藝,鈣鈦礦電池測試標準、測試技術與長期穩定性研究,鈣鈦礦電池與組件成本下降潛力和投資回報、鈣鈦礦疊層電池組件結構設計方案與效率極限分析等。
主題
1. 全球與中國光伏行業展望與鈣鈦礦技術前景
2. 大面積工業化鈣鈦礦電池和組件製造工藝
3. 鈣鈦礦電池的轉換效率和穩定性提升
4. 應用於量產大面積鈣鈦礦電池和組件的先進裝備
5. 鈣鈦礦電池測試標準、測試技術與長期穩定性研究
6. 鈣鈦礦電池與組件成本下降潛力與量產前景展望
7. 鈣鈦礦電池組件封裝技術與封裝材料
8. 鈣鈦礦電池金屬化方案與導電漿料
9. 鈣鈦礦電池的環保挑戰與解決方案
10. 鈣鈦礦疊層電池底電池選型——異質結、TOPCon和CIGS
11. 鈣鈦礦疊層電池組件結構設計方案與效率極限分析
12. 鈣鈦礦電池組件的市場應用前景
由於日期臨近,如有意向參會或者贊助,歡迎您和我們聯繫。負責人:孔小姐 13918486381(同微信號)
或Email至emma.k@chemweekly.com
Background
Perovskite solar cell is a promising next-generation photovoltaic technology and is rapidly entering the market. In July 2018, Microquanta’s perovskite module conversion efficiency was increased to 17.9%. In Dec. 2018, Oxford PV’s perovskite/silicon-based tandem cell achieved a conversion efficiency of 28%. In Feb. 2019, GCL Nano has built a pilot production line for 10MW large-scale perovskite modules, and has begun construction of a production line of 100MW. It is planned to commercialize perovskite modules by 2020.
Perovskite originally referred to minerals containing calcium, titanium and oxygen, was first discovered in 1839. Hereinafter, perovskites refer to a large class of compounds having the same crystal structure. Its chemical composition is abbreviated as ABX3, where A usually represents an organic cation, B represents a metal ion (such as Pb2+ or Sn2+), and X represents a halogen anion (such as Cl- or Br-).
Compared with crystalline silicon solar cells that require high-purity silicon, perovskite solar cells require only 90% purity of the material, the low-temperature process can reduce energy consumption, and the perovskite material consumed per unit area module is also much lower than crystalline silicon module. Therefore, perovskite solar cells and modules have great potential for cost reduction. According to public information, when the capacity of perovskite modules reaches more than 1GW, the cost is expected to be reduced to RMB 0.7/W.
As technology matures, crystalline silicon cells are moving toward their theoretical efficiency limits, and the efficiency that is further increased to more than 27% is costly. Perovskite/silicon-based tandem cell can achieve conversion efficiency of 30% or more. A tandem cell using crystalline silicon as the bottom cell and perovskite as the top cell is a technically and economically viable option, and tandem cell technology is compatible with bifacial power generation technology.
The challenges of perovskite solar cells are mainly stability and large-scale manufacturing, and related test standards and test techniques have not been perfected. Companies in the industrial chain are working hard to improve the perovskite cell and module technology as soon as possible. Heraeus announced that it is developing a range of products, such as low-temperature silver paste, PEDOT:PSS and conductive adhesive, to help the perovskite/Si tandem cell become a new generation solar cell technology.
Perovskite and Tandem Cell and Module Forum 2019 will be held on December 12 in China. The conference will discuss global and China’s PV industry outlook and perovskite technology prospects, large-area perovskite solar cell and module manufacturing processes - coating process, vacuum process, laser process and metallization process, perovskite solar cell test standards, test technology and long-term stability studies, perovskite solar cell and module cost reduction potential and return on investment, perovskite tandem cell & module structural design and efficiency limit analysis.
Topics
1. Global and China’s PV industry outlook and perovskite technology prospects
2. Large-area perovskite solar cell and module manufacturing processes
3. Perovskite solar cell conversion efficiency and stability improvement
4. Advanced equipment for mass production of large-area perovskite solar cells and modules
5. Perovskite solar cell test standards, test technology and long-term stability studies
6. Perovskite solar cell and module cost reduction potential and mass production prospects
7. Perovskite module encapsulating technology and materials
8. Perovskite solar cell metallization and conductive paste
9. Environmental challenges and solutions for perovskite solar cell
10. Perovskite tandem cell’s bottom cell selection - heterojunction, TOPCon and CIGS
11. Perovskite tandem cell & module structural design and efficiency limit analysis
12. Market application prospects of perovskite modules