用動圖演示的辦法,介紹實驗室紫外分光光譜UV、掃描電子顯微技術SEM、核磁共振波譜法NMR、掃描隧道顯微鏡STM儀器的原理:
1.紫外分光光譜UV
分析原理:吸收紫外光能量,引起分子中電子能級的躍遷
譜圖的表示方法:相對吸收光能量隨吸收光波長的變化
提供的信息:吸收峰的位置、強度和形狀,提供分子中不同電子結構的信息
物質分子吸收一定的波長的紫外光時,分子中的價電子從低能級躍遷到高能級而產生的吸收光譜較紫外光譜。紫光吸收光譜主要用於測定共軛分子、組分及平衡常數。
光線傳輸
光衍射
探測
數據輸出
2.掃描電子顯微技術SEM
分析原理:用電子技術檢測高能電子束與樣品作用時產生二次電子、背散射電子、吸收電子、X射線等並放大成象
譜圖的表示方法:背散射象、二次電子象、吸收電流象、元素的線分布和面分布等
提供的信息:斷口形貌、表面顯微結構、薄膜內部的顯微結構、微區元素分析與定量元素分析等
SEM工作圖
入射電子與樣品中原子的價電子發生非彈性散射作用而損失的那部分能量(30~50eV)激發核外電子脫離原子,能量大於材料逸出功的價電子從樣品表面逸出成為真空中的自由電子,此即二次電子。
電子發射圖
二次電子探測圖
二次電子試樣表面狀態非常敏感,能有效顯示試樣表面的微觀形貌,解析度可達5~10nm。
二次電子掃描成像
入射電子達到離核很近的地方被反射,沒有能量損失;既包括與原子核作用而形成的彈性背散射電子,又包括與樣品核外電子作用而形成的非彈性背散射電子。
背散射電子探測圖
用背反射信號進行形貌分析時,其解析度遠比二次電子低。可根據背散射電子像的亮暗程度,判別出相應區域的原子序數的相對大小,由此可對金屬及其合金的顯微組織進行成分分析。
EBSD成像過程
3.核磁共振波譜法NMR
分析原理:在外磁場中,具有核磁矩的原子核,吸收射頻能量,產生核自旋能級的躍遷
譜圖的表示方法:吸收光能量隨化學位移的變化
提供的信息:峰的化學位移、強度、裂分數和偶合常數,提供核的數目、所處化學環境和幾何構型的信息
NMR結構
進樣
樣品在磁場中
當外加射頻場的頻率與原子核自旋進動的頻率相同時,射頻場的能量才能被有效地吸收,因此對於給定的原子核,在給定的外加磁場中,只能吸收特定頻率射頻場提供的能量,由此形成核磁共振信號。
核磁共振及數據輸出
4.掃描隧道顯微鏡STM
分析原理:隧道電流強度對針尖和樣品之間的距離有著指數依賴關係,根據隧道電流的變化,我們可以得到樣品表面微小的起伏變化信息,如果同時對x-y方向進行掃描,就可以直接得到三維的樣品表面形貌圖,這就是掃描隧道顯微鏡的工作原理。
譜圖的表示方法:探針隨樣品表面形貌變化而引起隧道電流的波動
提供的信息:軟體處理後可輸出三維的樣品表面形貌圖
探針
隧道電流對針尖與樣品表面之間的距離極為敏感,距離減小0.1nm,隧道電流就會增加一個數量級。
隧道電流
針尖在樣品表面掃描時,即使表面只有原子尺度的起伏,也將通過隧道電流顯示出來,再利用計算機的測量軟體和數據處理軟體將得到的信息處理成為三維圖像在屏幕上顯示出來。
來源:製藥人職場加油站