DataNucleus Access Platform 3.0.7

2021-01-08 開源中國

DataNucleus Access Platform 是一個兼容各種標準的 Java 數據持久化框架,完全兼容 JDO1, JDO2, JDO2.1, JDO2.2, JDO2.3, 和 JPA1 等 Java 標準。提供一個基於 REST 的API。通過它可以訪問所有常見的資料庫伺服器,還包括 LDAP, NeoDatis, JSON, Excel/ODF spreadsheets, XML, BigTable, 和 HADOOP 資料庫等.

DataNucleus 3.0.7 主要改進內容包括:

Fix to use of persistence property "datanucleus.storeManagerType" JPA : Support for JPA2.1 Type Convertors JPA : Fix to EM.find to also work for datastore-identity JPA : Update to detection of 1-N UNI FK relations to avoid the need for JPA 'level' persistence property JPA : Add numeric conversion capabilities to EM.find key argument. JDO : Fix to duplicate close of query results when using Extent on non-RDBMS datastores Fix to load of metadata for persistence unit when persistable inner classes present Fix to instantiation of object from identity when root class is abstract and using single-field id RDBMS : Fix to JPQL "INDEX" SQL generation for join table case JSON, HBase, MongoDB, Excel, ODF, RDBMS : fix to version of core usable to prohibit v3.1

下載地址:DataNucleus community site.

相關焦點

  • DataNucleus AccessPlatform 4.0.1 發布
    DataNucleus AccessPlatform 4.0.1 發布,現已提供下載。
  • DataNucleus 4.0.7 發布,持久層框架
    DataNucleus 4.0.7 發布,此版本簡化了所有 4.0 最新插件綁定。
  • DataNucleus Access Platform 3.0 M3 發布
    DataNucleus Access Platform 是一個兼容各種標準的 Java 數據持久化框架,完全兼容 JDO1, JDO2, JDO2.1, JDO2.2, JDO2.3, 和 JPA1 等 Java 標準。
  • DataNucleus Access Platform 2.0.4 發布
    DataNucleus Access Platform 是一個兼容各種標準的 Java 數據持久化框架,完全兼容 JDO1, JDO2, JDO2.1, JDO2.2, JDO2.3, 和 JPA1 等 Java 標準。
  • DataNucleus Access Platform 3.1 裡程碑1
    DataNucleus Access Platform 發布了 3.1 的首個裡程碑,DataNucleus Access Platform 是一個兼容各種標準的 Java 數據持久化框架,兼容
  • 持久層框架 DataNucleus AccessPlatform 3.3.5 發布
    DataNucleus Access Platform 3.3.5 發布,此版本支持 WHERE 子句中使用 JPA "TREAT" ,默認支持在 fetchPlan 的候選查詢中添加批量獲取欄位集合功能
  • DataNucleus 3.0.8 發布
    DataNucleus Access Platform 是一個兼容各種標準的 Java 數據持久化框架, 兼容 JDO1, JDO2, JDO2.1, JDO2.2, JDO2.3, JPA1
  • Qualcomm Snapdragon 845 Mobile Platform Introduces New
    AI: Snapdragon 845 is Qualcomm Technologies』 third-generation AI mobile platform, delivering 3x improvement in overall AI performance of the prior generation SoC - transforming your mobile device
  • Atomic nucleus
    David Politzer and Frank Wilczek won the 2004 Nobel Prize in physics on Tuesday for their explanation of the force that binds particles inside the atomic nucleus.
  • 與EasyAccess2.0一起愉快的玩耍![使用篇]
    如果您已經在www.easyaccess.cn上註冊好了帳號(Domain和User),激活了HMI人機,分配好了權限關係,並讓現場的HMI上了線,然後怎麼進行遠程監控呢?萬事俱備,只欠東風——讓我們登入軟體、連接人機,兩步到位!
  • Wechat platform for tele-call taxi service in Xiamen
    The first batch of 200 new taxis exclusively for tele-call service have hit the road in Xiamen, handling 3,000 orders daily, and their operating company is developing a Wechat platform to provide
  • 2019年3月bioRxiv生信好文速覽
    3. The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world.
  • Pandas數據結構:DataFrame
    'LiSa']]創建DataFrame方法一: 由字典創建 字典的key是列索引 值可以是1.列表 2.ndarray 3.Series# 值是列表data1 = {"a": [1,2,3],"b": [4,5,6],"c": [7,8,9]}print(data1)print
  • 什麼是Pandas的DataFrame?
    創建DataFrame最常用的一種是直接傳入一個由等長列表或NumPy數組組成的字典:In [33]: data={'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],'year':[2000,2001,2002,2001,2002],'pop':[1.5,1.7,3.6,2.4,2.9]}In [34]: frame
  • 將Python中的字典數據轉化為DataFrame
    創建字典把上面的表格,改寫為:data = {'Rank':[1, 2, 3, 4, 5], 'Language': ['Python', 'Java', 'Javascript', 'C#', 'PHP'], 'Share':[29.88, 19.05, 8.17, 7.3, 6.15], 'Trend':[4.1, -1.8, 0.1, -0.1, -1.0
  • R語言data manipulation學習筆記之subset data
    setosa## 2   4.9          3.0          1.4        0.2       setosa## 3   4.7          3.2          1.3        0.2       setosa## 4   4.6          3.1          1.5        0.2
  • A multicenter, open-label phase 3 study of emicizumab ...
    In group A (n = 65), the annualized rate of treated bleeding events (ABRs) was 0.3 (95% confidence interval [CI], 0.17-0.50), and 77% had no treated bleeding events.
  • |python|離散化|dataframe...
    變量 MonthlyIncome 缺失率比較大,所以我們根據變量之間的相關關係填補缺失值,我們採用隨機森林法:  # 用隨機森林對缺失值預測填充函數 def set_missing(df): # 把已有的數值型特徵取出來 process_df = df.ix[:,[ 5, 0, 1, 2, 3, 4, 6, 7, 8, 9]]