排列組合是高考數學中相對獨立的內容,對學生分析問題、解決問題能力有較高要求,學生普遍反映難學。再者,排列組合思想在生活中也常應用。比如乘車規劃,彩票概率等,所以學好這些知識是非常有用的。
兩個基本原理是排列和組合的基礎
(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法.
(2)乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法.
這裡要注意區分兩個原理,要做一件事,完成它若是有n類辦法,是分類問題,第一類中的方法都是獨立的,因此用加法原理;做一件事,需要分n個步驟,步與步之間是連續的,只有將分成的若干個互相聯繫的步驟,依次相繼完成,這件事才算完成,因此用乘法原理。
為了幫助高中生擺脫排列組合問題的困擾,清北助學團的邱學長推薦了這份《排列組合問題經典題型與通用方法》資料。電子版歡迎私信我領取,直接發送資料名即可。