RESEARCH ARTICLE| SEPTEMBER 24, 2020
Sirolimus with CSP and MMF as GVHD prophylaxis for allogeneic transplantation with HLA antigen–mismatched donorsBrian Kornblit, Barry E. Storer, Niels S. Andersen, Michael B. Maris, Thomas R. Chauncey, Effie W. Petersdorf, Ann E. Woolfrey, Mary E. D. Flowers, Rainer Storb, David G. Maloney, Brenda M. Sandmaier
Blood (2020) 136 (13): 1499–1506.
https://doi.org/10.1182/blood.2020005338
Key PointsAdding sirolimus to standard GVHD prophylaxis reduces acute GVHD after nonmyeloablative HLA antigen–mismatched donor transplantation.
Compared with historical control subjects, the reduced incidence of acute GVHD translates into a better overall survival.
AbstractThis trial aimed to evaluate the efficacy of sirolimus in addition to cyclosporine (CSP) and mycophenolate mofetil (MMF) for graft-versus-host disease (GVHD) prophylaxis after nonmyeloablative conditioning for HLA class I or II mismatched hematopoietic cell transplantation (HCT). Eligible patients had hematologic malignancies treatable by allogeneic HCT. Conditioning consisted of fludarabine (90 mg/m2) and 2 to 3 Gy total body irradiation. GVHD prophylaxis comprised cyclosporine, mycophenolate mofetil, and sirolimus. The primary objective was to determine whether the cumulative incidence of grade 2 to 4 acute GVHD could be reduced to <70% in HLA class I or II mismatched HCT. The study was closed on December 20, 2018. Seventy-seven participants were recruited between April 14, 2011, and December 12, 2018, of whom 76 completed the study intervention. Median follow-up was 47 months (range, 4-94 months). The cumulative incidence of grade 2 to 4 acute GVHD at day 100 was 36% (95% confidence interval [CI], 25-46), meeting the primary end point. The cumulative incidence of nonrelapse morality, relapse/progression, and overall survival was 18% (95% CI, 9-27), 30% (interquartile range, 19-40), and 62% (95% CI, 50-73) after 4 years. In conclusion, the addition of sirolimus to cyclosporine and mycophenolate mofetil resulted in a lower incidence of acute GVHD, thus translating into superior overall survival compared with historical results. This trial was registered at www.clinicaltrials.gov as #NCT01251575.
Subjects:
Clinical Trials and Observations, Transplantation
Topics:
donors, graft-versus-host disease, human leukocyte antigens, mismatch, rapamycin, allogeneic hematopoietic stem cell transplant, graft-versus-host disease, acute, transplantation, homologous, mycophenolate mofetil
REFERENCES1.McSweeney PA, Niederwieser D, Shizuru JA, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood. 2001;97(11):3390-3400.
2.Niederwieser D, Maris M, Shizuru JA, et al. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood. 2003;101(4):1620-1629.
3.Storb R, Gyurkocza B, Storer BE, et al. Graft-versus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation. J Clin Oncol. 2013;31(12):1530-1538.
4.Petersdorf EW. Which factors influence the development of GVHD in HLA-matched or mismatched transplants? Best Pract Res Clin Haematol. 2017;30(4):333-335.
5.Gragert L, Eapen M, Williams E, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371(4):339-348.
6.Nakamae H, Storer BE, Storb R, et al. Low-dose total body irradiation and fludarabine conditioning for HLA class I-mismatched donor stem cell transplantation and immunologic recovery in patients with hematologic malignancies: a multicenter trial. Biol Blood Marrow Transplant. 2010;16(3):384-394.
7.Gooptu M, Kim HT, Howard A, et al. Effect of sirolimus on immune reconstitution following myeloablative allogeneic stem cell transplantation: an ancillary analysis of a randomized controlled trial comparing tacrolimus/sirolimus and tacrolimus/methotrexate (Blood and Marrow Transplant Clinical Trials Network/BMT CTN 0402). Biol Blood Marrow Transplant. 2019;25(11):2143-2151.
8.Kahl C, Storer BE, Sandmaier BM, et al. Relapse risk in patients with malignant diseases given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood. 2007;110(7):2744-2748.
9.Armand P, Kim HT, Logan BR, et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood. 2014;123(23):3664-3671.
10.Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15(6):825-828.
11.Sullivan KM. Graft-versus-host disease. In: Thomas ED, Blume KG, Forman SJ, eds. Hematopoietic Cell Transplantation. 2nd ed. Malden, MA: Blackwell Sciences;1999:515-536.
12.Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;18(6):695-706.
13.Sandmaier BM, Kornblit B, Storer BE, et al. Addition of sirolimus to standard cyclosporine plus mycophenolate mofetil-based graft-versus-host disease prophylaxis for patients after unrelated non-myeloablative haemopoietic stem cell transplantation: a multicentre, randomised, phase 3 trial. Lancet Haematol. 2019;6(8):e409-e418.
14.Verneris MR, Lee SJ, Ahn KW, et al. HLA mismatch is associated with worse outcomes after unrelated donor reduced-intensity conditioning hematopoietic cell transplantation: an analysis from the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2015;21(10):1783-1789.
15.Yokoyama H, Kanda J, Fuji S, et al; HLA Working Group of the Japan Society for Hematopoietic Cell Transplantation. Impact of human leukocyte antigen allele mismatch in unrelated bone marrow transplantation with reduced-intensity conditioning regimen. Biol Blood Marrow Transplant. 2017;23(2):300-309.
16.Fujiwara SI, Kanda J, Tatara R, et al; HLA Working Group of the Japan Society for Hematopoietic Cell Transplantation. Clinical significance of low-dose total body irradiation in HLA-mismatched reduced-intensity stem cell transplantation. Bone Marrow Transplant. 2019;54(8):1327-1336.
17.Parody R, Lopez-Corral L, Godino O L, et al. GVHD prophylaxis with sirolimus-tacrolimus may overcome the deleterious effect on survival of HLA mismatch after reduced-intensity conditioning allo-SCT. Bone Marrow Transplant. 2015;50(1):121-126.
18.Kasamon YL, Ambinder RF, Fuchs EJ, et al. Prospective study of nonmyeloablative, HLA-mismatched unrelated BMT with high-dose posttransplantation cyclophosphamide. Blood Adv. 2017;1(4):288-292.
19.Bonifazi F, Rubio MT, Bacigalupo A, et al. Rabbit ATG/ATLG in preventing graft-versus-host disease after allogeneic stem cell transplantation: consensus-based recommendations by an international expert panel. Bone Marrow Transplant. 2020;55(6):1093-1102.
20.Battipaglia G, Labopin M, Kröger N, et al. Posttransplant cyclophosphamide vs antithymocyte globulin in HLA-mismatched unrelated donor transplantation. Blood. 2019;134(11):892-899.
21.Luznik L, O』Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641-650.
22.McCurdy SR, Kanakry JA, Showel MM, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125(19):3024-3031.
23.D』Souza A, Lee S, Zhu X, Pasquini M. Current use and trends in hematopoietic cell transplantation in the United States. Biol Blood Marrow Transplant. 2017;23(9):1417-1421.
24.Passweg JR, Baldomero H, Bader P, et al; European Society for Blood and Marrow Transplantation (EBMT). Hematopoietic SCT in Europe 2013: recent trends in the use of alternative donors showing more haploidentical donors but fewer cord blood transplants. Bone Marrow Transplant. 2015;50(4):476-482.
25.Ciurea SO, Zhang MJ, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033-1040.
26.Ahmed S, Kanakry JA, Ahn KW, et al. Lower graft-versus-host disease and relapse risk in post-transplant cyclophosphamide-based haploidentical versus matched sibling donor reduced-intensity conditioning transplant for Hodgkin lymphoma. Biol Blood Marrow Transplant. 2019;25(9):1859-1868.
27.Solomon SR, St. Martin A, Shah NN, et al. Myeloablative vs reduced intensity T-cell-replete haploidentical transplantation for hematologic malignancy. Blood Adv. 2019;3(19):2836-2844.
28.Ghosh N, Karmali R, Rocha V, et al. Reduced-intensity transplantation for lymphomas using haploidentical related donors versus HLA-matched sibling donors: a Center for International Blood and Marrow Transplant Research Analysis. J Clin Oncol. 2016;34(26):3141-3149.
29.Brunstein CG, Fuchs EJ, Carter SL, et al; Blood and Marrow Transplant Clinical Trials Network. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118(2):282-288.
30.Gaballa S, Ge I, El Fakih R, et al. Results of a 2-arm, phase 2 clinical trial using post-transplantation cyclophosphamide for the prevention of graft-versus-host disease in haploidentical donor and mismatched unrelated donor hematopoietic stem cell transplantation. Cancer. 2016;122(21):3316-3326.
31.Sugita J, Kagaya Y, Miyamoto T, et al; Japan Study Group for Cell Therapy and Transplantation (JSCT). Myeloablative and reduced-intensity conditioning in HLA-haploidentical peripheral blood stem cell transplantation using post-transplant cyclophosphamide. Bone Marrow Transplant. 2019;54(3):432-441.
32.Gagelmann N, Bacigalupo A, Rambaldi A, et al. Haploidentical stem cell transplantation with posttransplant cyclophosphamide therapy vs other donor transplantations in adults with hematologic cancers: a systematic review and meta-analysis. JAMA Oncol. 2019;5(12):1739.
33.Cieri N, Greco R, Crucitti L, et al. Post-transplantation cyclophosphamide and sirolimus after haploidentical hematopoietic stem cell transplantation using a treosulfan-based myeloablative conditioning and peripheral blood stem cells. Biol Blood Marrow Transplant. 2015;21(8):1506-1514.
This program is developed by Focus Insight with the permission of American Society of Hematology, Inc. The content are excerpted from the journal Blood. Copyright © 2019 The American Society of Hematology. All rights reserved. 「American Society of Hematology」, 「ASH」 and the ASH Logo are registered trademarks of the American Society of Hematology.