利用數字示波器測試開關電源的方法

2020-12-05 電子產品世界

從傳統的模擬型電源到高效的開關電源,電源的種類和大小千差萬別。它們都要面對複雜、動態的工作環境。設備負載和需求可能在瞬間發生很大變化。即使是「日用的」開關電源,也要能夠承受遠遠超過其平均工作電平的瞬間峰值。設計電源或系統中要使用電源的工程師需要了解在靜態條件以及最差條件下電源的工作情況。

本文引用地址:http://www.eepw.com.cn/article/201610/309054.htm

過去,要描述電源的行為特徵,就意味著要使用數字萬用表測量靜態電流和電壓,並用計算器或PC進行艱苦的計算。今天,大多數工程師轉而將示波器作為他們的首選電源測量平臺。現代示波器可以配備集成的電源測量和分析軟體,簡化了設置,並使得動態測量更為容易。用戶可以定製關鍵參數、自動計算,並能在數秒鐘內看到結果,而不只是原始數據。

電源設計問題及其測量需求

理想情況下,每部電源都應該像為它設計的數學模型那樣地工作。但在現實世界中,元器件是有缺陷的,負載會變化,供電電源可能失真,環境變化會改變性能。而且,不斷變化的性能和成本要求也使電源設計更加複雜。考慮這些問題:

電源在額定功率之外能維持多少瓦的功率?能持續多長時間?電源散發多少熱量?過熱時會怎樣?它需要多少冷卻氣流?負載電流大幅增加時會怎樣?設備能保持額定輸出電壓嗎?電源如何應對輸出端的完全短路?電源的輸入電壓變化時會怎樣?

設計人員需要研製佔用空間更少、降低熱量、縮減製造成本、滿足更嚴格的EMI/EMC標準的電源。只有一套嚴格的測量體系才能讓工程師達到這些目標。

示波器和電源測量

對那些習慣於用示波器進行高帶寬測量的人來說,電源測量可能很簡單,因為其頻率相對較低。實際上,電源測量中也有很多高速電路設計師從來不必面對的挑戰。

整個開關設備的電壓可能很高,而且是「浮動的」,也就是說,不接地。信號的脈衝寬度、周期、頻率和佔空比都會變化。必須如實捕獲並分析波形,發現波形的異常。這對示波器的要求是苛刻的。多種探頭——同時需要單端探頭、差分探頭以及電流探頭。儀器必須有較大的存儲器,以提供長時間低頻採集結果的記錄空間。並且可能要求在一次採集中捕獲幅度相差很大的不同信號。

開關電源基礎

大多數現代系統中主流的直流電源體系結構是開關電源(SMPS),它因為能夠有效地應對變化負載而眾所周知。典型SMPS的電能信號路徑包括無源器件、有源器件和磁性元件。SMPS儘可能少地使用損耗性元器件(如電阻和線性電晶體),而主要使用(理想情況下)無損耗的元器件:開關電晶體、電容和磁性元件。

SMPS設備還有一個控制部分,其中包括脈寬調製調節器脈頻調製調節器以及反饋環路1等組成部分。控制部分可能有自己的電源。圖1是簡化的SMPS示意圖,圖中顯示了電能轉換部分,包括有源器件、無源器件以及磁性元件。

SMPS技術使用了金屬氧化物場效應電晶體(MOSFET)與絕緣柵雙極電晶體(IGBT)等功率半導體開關器件。這些器件開關時間短,能承受不穩定的電壓尖峰。同樣重要的是,它們不論在開通還是斷開狀態,消耗的能量都極少,效率高而發熱低。開關器件在很大程度上決定了SMPS的總體性能。對開關器件的主要測量包括:開關損耗、平均功率損耗、安全工作區及其他。

準備進行電源測量

準備進行開關電源的測量時,一定要選擇合適的工具,並且設置這些工具,使它們能夠準確、可重複地工作。當然示波器必須具備基本的帶寬和採樣速率,以適應SMPS的開關頻率。電源測量最少需要兩個通道,一個用於電壓,一個用於電流。有些設施同樣重要,它們可以使電源測量更容易、更可靠。下面是一部分要考慮的事項:

儀器能在同一次採集中處理開關器件的開通和斷開電壓嗎?這些信號的比例可能達到100,000:1。

有可靠、準確的電壓探頭和電流探頭嗎?有可以校正它們的不同延遲的有效方法嗎?

有沒有有效的方法來將探頭的靜態噪聲降至最低?

儀器能夠配備足夠的記錄長度,以很高的採樣速率捕獲較長的完整工頻波形嗎?

這些特徵是進行有意義且有效的電源設計測量的基礎。

測量一次採集中的100伏和100毫伏電壓

要測量開關器件的開關損耗和平均功率損耗,示波器首先必須分別確定在斷開和開通時開關器件上的電壓。

在AC/DC變流器中,開關器件上的電壓動態範圍非常大。開通狀態下開關器件上通過的電壓取決於開關器件的類型。在MOSFET管中,開通電壓為導通電阻和電流的乘積。在雙極結型電晶體(BJT)和IGBT器件中,該電壓主要取決於飽和導通壓(VCEsat)。斷開狀態的電壓取決於工作輸入電壓和開關變換器的拓撲。為計算設備設計的典型直流電源使用80Vrms到264Vrms之間的通用市電電壓。

在最高輸入電壓下開關器件上的斷開狀態電壓(TP1和TP2之間)可能高達750V。在開通狀態,相同端子間的電壓可能在幾毫伏到大約1伏之間。顯示了開關器件的典型信號特性。

為了準確地進行開關器件電源測量,必須先測量斷開和開通電壓。然而,典型的8位數字示波器的動態範圍不足以在同一個採集周期中既準確採集開通期間的毫伏級信號,又準確採集斷開期間出現的高電壓。要捕獲該信號,示波器的垂直範圍應設為每分度100伏。在此設置下,示波器可以接受高達1000V的電壓,這樣就可以採集700V的信號而不會使示波器過載。使用該設置的問題在於最大靈敏度(能解析的最小信號幅度)變成了1000/256,即約為4V。

泰克DPOPWR軟體解決了這個問題,用戶可以把設備技術數據中的RDSON或VCEsat值輸入圖4所示的測量菜單中。如果被測電壓位於示波器的靈敏度範圍內,DPOPWR也可以使用採集的數據進行計算,而不是使用手動輸入的值。 消除電壓探頭和電流探頭之間的時間偏差

要使用數字示波器進行電源測量,就必須測量MOSFET開關器件漏極、源極間的電壓和電流,或IGBT集電極、發射極間的電壓。該任務需要兩個不同的探頭:一支高壓差分探頭和一支電流探頭。後者通常是非插入式霍爾效應型探頭。這兩種探頭各有其獨特的傳輸延遲。這兩個延遲的差(稱為時間偏差),會造成幅度測量以及與時間有關的測量不準確。一定要了解探頭傳輸延遲對最大峰值功率和面積測量的影響。畢竟,功率是電壓和電流的積。如果兩個相乘的變量沒有很好地校正,結果就會是錯誤的。探頭沒有正確進行「時間偏差校正」時,開關損耗之類測量的準確性就會影響。

表明了探頭時滯影響的實際示波器屏幕圖。它使用泰克P52051.3kV差分探頭和TCP0030AC/DC電流探頭連接到DUT上。電壓和電流信號通過校準夾具提供。說明了電壓探頭和電流探頭之間的時滯,顯示了在沒有校正兩個探頭時滯時獲得的測量結果(6.059mW)。顯示了校正探頭時滯的影響。兩條參考曲線重疊在一起,表明已經補償了延遲。中的測量結果表明了正確校正時滯的重要性。這一實例表明,時滯引入了6%的測量誤差。準確地校正時滯降低了峰到峰功率損耗測量誤差。

DPOPWR電源測量軟體可以自動校正所選探頭組合的時間偏差。該軟體控制示波器,並通過實時電流和電壓信號調整電壓通道和電流通道之間的延遲,以去除電壓探頭和電流探頭之間傳輸延遲的差別。

還可以使用一種靜態校正時間偏差的功能,但前提是特定的電壓探頭和電流探頭有恆定、可重複的傳輸延遲。靜態校正時間偏差的功能根據一張內置的傳輸時間表,自動為選定探頭(如本文檔中討論的Tektronix探頭)調整選定電壓和電流通道之間的延遲。該技術提供了一種快速而方便的方法,可以將時間偏差降至最小。

消除探頭零偏和噪聲

差分探頭和電流探頭可能會有很小的偏置。應在測量前消除這一偏置,因為它會影響測量精度。某些探頭採用內置的自動方法消除偏置,其它探頭則要求手動消除偏置。

自動消除偏置

配有TekVPITM探頭接口的探頭與示波器相結合,可以消除信號路徑中發生的任何DC偏置誤差。在TekVPITM探頭上按Menu按鈕,示波器上出現ProbeControls框,顯示AutoZero功能。選擇AutoZero選項,會自動清除測量系統中存在的任何DC偏置誤差。TekVPITM電流探頭還在探頭機身上有一個Degauss/AutoZero按鈕。壓下AutoZero按鈕,會消除測量系統中存在的任何DC偏置誤差。

手動消除偏置

大多數差分電壓探頭都有內置的直流零偏修整控制,這使消除零偏成為一件相對簡單的步驟:準備工作完成之後,接下來:

將示波器設置為測量電壓波形的平均值;

選擇將在實際測量中使用的靈敏度(垂直)設置;

不加信號,將修整器調為零,並使平均電平為0V(或儘量接近0V)。

相似地,在測量前必須調節電流探頭。在消除零偏之後:

將示波器靈敏度設置為實際測量中將要使用的值;

關閉沒有信號的電流探頭;

將直流平衡調為零;

把中間值調節到0A或儘可能接近0A;

注意,這些探頭都是有源設備,即使在靜態,也總會有一些低電平噪聲。這種噪聲可能影響那些同時依賴電壓和電流波形數據的測量。DPOPWR軟體包包含一項信號調節功能,可以將固有探頭噪聲的影響降至最低。

記錄長度在電源測量中的作用

示波器在一段時間內捕獲事件的能力取決於所用的採樣速率,以及存儲採集到的信號樣本的存儲器的深度(記錄長度)。存儲器填充的速度和採樣速率成正比。如果為了提供詳細的高解析度信號而將採樣速率設得很高,存儲器很快就會充滿。

對很多SMPS電源測量來說,必須捕獲工頻信號的四分之一周期或半個周期(90或180度),有些甚至需要整個周期。這是為了積累足夠的信號數據,以在計算中抵消工頻電壓波動的影響。

識別真正的Ton與Toff轉換

為了精確地確定開關轉換中的損耗,首先必須濾除開關信號中的振蕩。開關電壓信號中的振蕩很容易被誤認為開通或關斷轉換。這種大幅度振蕩是SMPS在非持續電流模式(DCM)和持續電流模式(CCM)之間切換時電路中的寄生元件造成的。

簡化形式表示出了一個開關信號。這種振蕩使示波器很難識別真正的開通或關斷轉換。一種解決方法是預先定義一個信號源進行邊沿識別、一個參考電平和一個遲滯電平,根據信號複雜度和測量要求的不同,也可以將測得信號本身作為邊沿電平的信號源。或者,也可以指定某些其它的整潔的信號。

在某些開關電源設計(如有源功率因數校正變流器)中,振蕩可能要嚴重得多。DCM模式大大增強了振蕩,因為開關電容開始和濾波電感產生共振。僅僅設置參考電平和磁滯電平可能不足以識別真正的轉換。

這種情況下,開關器件的柵極驅動信號可以確定真正的開通和關斷轉換,這樣就只需要適當設置柵極驅動信號的參考電平和磁滯電平。

相關焦點

  • 如何利用示波器有效輔助開關電源設計
    從電磁兼容性的三要素講,要解決開關電源的電磁兼容性,可從三個方面入手。1)減小幹擾源產生的幹擾信號;2)切斷幹擾信號的傳播途徑;3)增強受幹擾體的抗幹擾能力。在解決開關電源內部的電磁兼容性時,可以綜合運用上述三個方法,以成本效益比及實施的難易性為前提。對開關電源產生的對外幹擾,如電源線諧波電流、電源線傳導幹擾、電磁場輻射幹擾等,只能用減小幹擾源的方法來解決。
  • 示波器在開關電源分析中的應用
    電源是所有電子產品不可或缺的組成部分,電源分為開關電源、線性電源等類型,其中開關電源已經成為數字計算、網絡通信開關電源的好壞關係到產品的整體性能。因此,在研發和生產測試中對於電源的精確分析顯得尤為重要。SIGLENT推出的SDS2000超級螢光示波器配備強大的電源分析模塊,支持絕大部分電源性能指標的精確測試測量。下面將通過分析電源板輸入模塊,給大家詳細介紹SDS2000的電源分析功能。
  • 電源測試之-MOSFET開關軌跡線的示波器重現方法
    MOSFET的開關軌跡線是判斷MOSFET開關過程「軟硬」程度的重要評估指標,MOSFET的軟硬程度對於開關電源的性能、壽命、EMI水平都有至關重要的影響,本文介紹了一種簡單實用的方法,利用泰克TDS3000系列示波器,可以實時做出MOSFET的開關軌跡線,為改善MOSFET的開關狀態提供依據。
  • 用示波器維修開關電源技法
    但是,對於一些開關電源的疑難故障,如屢損開關管及一些軟故障等,示波器則可大顯身手。通過測試一些關鍵點的波形,可快速圈定故障範圍,查找到故障點。  圖2 開關電源電路主要測試波形  C104正端為整流濾波波形測試點(測試時,示波器應採用直流耦合輸入方式),掃描速度開關置10ms
  • 地線要短――測試開關電源紋波時
    開關電源的紋波是指,疊加在開關電源輸出電壓上,頻率與開關頻率一致的交流量,其產生原因是開關電源的電流紋波作用在電容的ESR上。他的第一個錯誤是使用了一支帶長接地引線的示波器探針;他的第二個錯誤是將探針形成的環路和接地引線均置於電源變壓器和開關元件附近;他的最後一個錯誤是允許示波器探針和輸出電容之間存在多餘電感。該問題在紋波波形中表現為高頻拾取。在電源中,存在大量可以很輕鬆地與探針耦合的高速、大信號電壓和電流波形,其中包括耦合自電源變壓器的磁場,耦合自開關節點的電場,以及由變壓器互繞電容產生的共模電流。
  • 利用示波器測電壓的方法及其使用注意事項
    利用示波器測電壓的方法及其使用注意事項 秩名 發表於 2012-07-12 10:31:54   示波器測電壓的方法有哪些?
  • 用示波器進行開關電源測量和分析
    3)、開關電源特點:  (1)開關電源是一種非線性電源,體積和重量輕。  (2)功率電晶體工作在開關狀態,電晶體上的功耗小,轉化效率高。  2 開關電源測量考慮  目前的電源設計人員在開發高效率、低成本電源的過程中正面臨著越來越多的限制。過去,設計人員的主要目標是經濟高效的解決方案。
  • 示波器測量電源紋波&噪聲技術
    以我們ZDS2024示波器本身為例,內部的主電源為一個開關電源,主板上的電源分配網絡要把這個直流電源變成各種電壓的直流電源(如:+-5V, +3.3V, +12V等等),給CPU以及各個晶片供電,同時我們的風扇也是隨時溫度動態的在變化。
  • 從測試應用介紹示波器的使用方法
    但隨著計算機、半導體和通信技術的發展,示波器的種類、型號越來越多,從而使示波器的作用得到詳細的劃分。示波器雖然分成好幾類,各類又有許多種型號,但是一般的示波器除頻帶寬度、輸入靈敏度等不完全相同外,但示波器的使用方法在基本方面都是相同的。下面小編從測試應用發麵來介紹一下示波器的作用和它的基礎使用方法。
  • 實例演示,帶你深入了解開關電源測試
    在開關電源向高頻、高可靠、低耗、低噪聲、抗幹擾和模塊化方向發展的同時,也對產品設計驗證和功能測試提出了更為嚴格的要求。本文中將以 RIGOL(北京普源精儀科技有限責任公司)的產品為例介紹一些開關電源的常用測試方案。本測試方案中用到的儀器分別是RIGOL DS1302CA數字示波器、DM3064數字萬用表及DG系列函數/任意波形信號發生器。
  • 如何去測試「高頻開關電源」噪聲
    如何去測試「高頻開關電源」噪聲 工程師3 發表於 2018-04-23 15:48:00 這篇文章以實際測試案例說明了測量電源紋波和測量電源噪聲在示波器帶寬要求上的不同及不同帶寬所引起的測量結果的巨大差異
  • 五種利用示波器精確測量電源完整性的技巧
    下面介紹了五種利用示波器精確測量電源完整性的技巧。使用者將在示波器的顯示屏上看到較粗波形,不要將它與快速更新速率相混淆。大於真實信號的峰-峰值會顯示並被測量到。 最好的方法是使用噪聲更低的示波器。如何確定示波器的噪聲水平?大多數示波器製造商都會提供產品規格表,列出該特定示波器的典型均方根(RMS)噪聲值;這些噪聲值是根據大量示波器樣本所特徵化。
  • 測試測量關鍵基礎之示波器(一)
    鑑於這些應用,泰克已經宣布,其帶寬超過30GHz的示波器將於今年下半年晚些時候推出。  Q5: 怎樣才能提高測試儀器的靈敏度呢?  A: 選擇合適的帶寬,帶寬過大會增加噪聲,在垂直設置上,儘可能讓信號填滿屏幕,好充分利用示波器的AD位數,可以採用波形平均,合適的探頭的帶寬,選擇高解析度 (Hi-res) 採集模式等等。
  • 數字示波器的作用 示波器頻率計算方法
    數字示波器的作用 示波器頻率計算方法 辰光 發表於 2016-10-09 10:38:42   示波器是電子工程師們日常作為測試測量使用頻率很高的電子儀器,示波器從發展歷史上看
  • 示波器在測試電源紋波/噪聲上的應用
    測量方法測量紋波/噪聲首先必須知道正確的測量方法,很多工程師拿數字示波器測量出來幾百mV的紋波/噪聲值,和參數規格一比,完全差了幾十的倍數這個肯定是測量方式不正確造成。
  • 用示波器測量電源噪聲的方法(1)
    因此設計人員在從手機到伺服器等新的數字電路設計中會更注意電源噪聲。實時示波器通常用來測量電源噪聲。本文將講述分析電源噪聲的技術,評估電源噪聲測試的工具。對「噪聲」的理解在理想的情況下,電源是不會有噪聲的,那麼電源噪聲是怎麼產生的呢?除了由於熱過程不可避免引起的高斯噪聲(通常這不是噪聲的主要部分)之外,所有的電源噪聲都會有一到兩個源。開關電源會造成不希望的噪聲,這些噪聲通常會在開關切換頻率的諧波或者和切換頻率一致。當門電路和輸出引腳驅動開關時,會要從電源上得到電流。
  • 數字示波器百問(八)
    測量紋波要注意的事項: 示波器探頭地線會帶來很大紋波,應該拔掉地線直接使用探頭內地線進行測量。當然,最好的測量方法是使用50歐姆終端電阻,用BNC電纜直接聯結到示波器,這裡應該注意該50歐姆電阻要考慮功耗,可能要大功率電阻。相關的標準要求,比如是否要分出周期性工頻紋波和開關紋波,高頻噪聲等。
  • 開關電源之驅動電路的相關測試
    開關電源,又稱交換式電源、開關變換器,是一種高頻化電能轉換裝置,是電源供應器的一種。民熔開關電源利用的切換電晶體多半是在全開模式及全閉模式之間切換,這兩個模式都有低耗散的特點,切換之間的轉換會有較高的耗散,但時間很短,所以民熔開關電源比較節省能源,產生廢熱較少。民熔開關電源的高轉換效率是其一大優點,而民熔開關電源工作頻率高,也可以使用小尺寸、輕重量的變壓器,民熔開關電源重量也會比較輕。民熔開關電源產品廣泛應用於工業自動化控制、軍工設備、科研設備、LED照明等領域。
  • 開關電源檢測常用的電子儀器儀表分類及型號匯總
    大致可分為42大類:頻率測量儀(包括頻率標準和頻率計數器)時間測量儀;電阻測量儀(含歐姆表、絕緣電阻表等);電容測量儀(包栝測量損耗角正切等參數);電感測量儀(含品質因數測量儀、高頻Q表);溫度及溫度係數測量儀;接收機測試儀;阻抗測量儀(含阻抗圖示儀);電橋;模擬式電壓表,模擬式萬用表(亦稱復用表);數字電壓表,數字萬用表;功率計;信號發生器(包括函數發生器);示波器 (含存儲示波器);頻率特性測量儀
  • 用示波器測電源紋波,你真的測準了嗎?
    紋波是電源的核心指標,但如何準確測量紋波確實一個被廣泛忽略的問題。也許您認為不就是示波器交流耦合,然後把探頭點在電源上嗎?事實遠非如此,這裡將為您呈現紋波測試的正確方式。一、探頭的選擇在十幾年前,很多公司的電源測試標準中都有明確的規定,要求使用1:1 探頭進行測量。因為這種探頭不會損失示波器的測量檔位,比如示波器原來最小檔位是2mv/div,使用1:1探頭就仍然可以通過這個檔位測量紋波,即可以準確測量出10mv以內的紋波。