「變頻器」在實際工程項目中是經常用到的,最簡單的莫過於我們通常認為的調速,但是我們作為一名設計者不要停留在這,要知道有關變頻器的一切,比如:什麼是變頻器、變頻器工作原理、變頻器組成,為什麼要用變頻、及有哪些控制方式等等,這些你都真得懂嗎?今天小編就系統的給大家介紹一下。
一、變頻器概念
變頻器(Variable-frequency Drive,VFD)是應用變頻技術與微電子技術,通過改變電機工作電源頻率方式來控制交流電動機的電力控制設備。變頻器主要由整流(交流變直流)、濾波、逆變(直流變交流)、制動單元、驅動單元、檢測單元微處理單元等組成。變頻器靠內部IGBT的開斷來調整輸出電源的電壓和頻率,根據電機的實際需要來提供其所需要的電源電壓,進而達到節能、調速的目的,另外,變頻器還有很多的保護功能,如過流、過壓、過載保護等等。隨著工業自動化程度的不斷提高,變頻器也得到了非常廣泛的應用。
二、變頻器工作原理
可以這麼簡單理解: 變頻器是把工頻電源(50Hz或60Hz)變換成各種頻率的交流電源,以實現電機的變速運行的設備,其中控制電路完成對主電路的控制,整流電路將交流電變換成直流電,直流中間電路對整流電路的輸出進行平滑濾波,逆變電路將直流電再逆變成交流電。對於如矢量控制變頻器這種需要大量運算的變頻器來說,有時還需要一個進行轉矩計算的CPU以及一些相應的電路。
主電路是給異步電動機提供調壓調頻電源的電力變換部分,變頻器的主電路大體上可分為兩類:
1、電壓型是將電壓源的直流變換為交流的變頻器,直流迴路的濾波是電容。 2、電流型是將電流源的直流變換為交流的變頻器,其直流迴路濾波是電感。 它由三部分構成,將工頻電源變換為直流功率的「整流器」,吸收在變流器和逆 變器產生的電壓脈動的「平波迴路。
三、變頻器的分類
變頻器的分類方法有多種,按照主電路工作方式分類,可以分為電壓型變頻器和電流型變頻器;按照開關方式分類,可以分為PAM控制變頻器、PWM控制變頻器和高載頻PWM控制變頻器;按照工作原理分類,可以分為V/f控制變頻器、轉差頻率控制變頻器和矢量控制變頻器等;按照用途分類,可以分為通用變頻器、高性能專用變頻器、高頻變頻器、單相變頻器和三相變頻器等。
三、變頻器基本組成
變頻器通常分為4部分:整流單元、高容量電容、逆變器和控制器。
1、整流單元:將工作頻率固定的交流電轉換為直流電。
2、高容量電容:存儲轉換後的電能。
3、逆變器:由大功率開關電晶體陣列組成電子開關,將直流電轉化成不同頻 率、寬度、幅度的方波。
4、控制器:按設定的程序工作,控制輸出方波的幅度與脈寬,使疊加為近似正 弦波的交流電,驅動交流電動機。
四、變頻器的功能作用
1、變頻節能
變頻器節能主要表現在風機、水泵的應用上。為了保證生產的可靠性,各種生產機械在設計配用動力驅動時,都留有一定的富餘量。當電機不能在滿負荷下運行時,除達到動力驅動要求外,多餘的力矩增加了有功功率的消耗,造成電能的浪費。風機、泵類等設備傳統的調速方法是通過調節入口或出口的擋板、閥門開度來調節給風量和給水量,其輸入功率大,且大量的能源消耗在擋板、閥門的截流過程中。當使用變頻調速時,如果流量要求減小,通過降低泵或風機的轉速即可滿足要求。
電動機使用變頻器的作用就是為了調速,並降低啟動電流。為了產生可變的電壓和頻率,該設備首先要把電源的交流電變換為直流電(DC),這個過程叫整流。把直流電(DC)變換為交流電(AC)的裝置,其科學術語為「inverter」(逆變器)。一般逆變器是把直流電源逆變為一定的固定頻率和一定電壓的逆變電源。對於逆變為頻率可調、電壓可調的逆變器我們稱為變頻器。變頻器輸出的波形是模擬正弦波,主要是用在三相異步電動機調速用,又叫變頻調速器。對於主要用在儀器儀表的檢測設備中的波形要求較高的可變頻率逆變器,要對波形進行整理,可以輸出標準的正弦波,叫變頻電源。一般變頻電源是變頻器價格的15--20倍。由於變頻器設備中產生變化的電壓或頻率的主要裝置叫「inverter」,故該產品本身就被命名為「inverter」,即:變頻器。
變頻不是到處可以省電,有不少場合用變頻並不一定能省電。 作為電子電路,變頻器本身也要耗電(約額定功率的3-5%)。一臺1.5匹的空調自身耗電算下來也有20-30W,相當於一盞長明燈. 變頻器在工頻下運行,具有節電功能,是事實。但是他的前提條件是:
第一、大功率並且為風機/泵類負載;
第二、裝置本身具有節電功能(軟體支持);
這是體現節電效果的條件。除此之外,無所謂節不節電,沒有什麼意義。如果不加前提條件的說變頻器工頻運行節能,就是誇大或是商業炒作。知道了原委,你會巧妙的利用他為你服務。一定要注意使用場合和使用條件才好正確應用,否則就是盲從、輕信而「受騙上當」。
2、功率因數補償節能
無功功率不但增加線損和設備的發熱,更主要的是功率因數的降低導致電網有功功率的降低,大量的無功電能消耗在線路當中,設備使用效率低下,浪費嚴重,使用變頻調速裝置後,由於變頻器內部濾波電容的作用,從而減少了無功損耗,增加了電網的有功功率。
3、軟啟動節能
1):電機硬啟動對電網造成嚴重的衝擊,而且還會對電網容量要求過高,啟動時產生的大電流和震動時對擋板和閥門的損害極大,對設備、管路的使用壽命極為不利。而使用變頻節能裝置後,利用變頻器的軟啟動功能將使啟動電流從零開始,最大值也不超過額定電流,減輕了對電網的衝擊和對供電容量的要求,延長了設備和閥門的使用壽命。節省了設備的維護費用。
2):從理論上講,變頻器可以用在所有帶有電動機的機械設備中,電動機在啟動時,電流會比額定高5-6倍的,不但會影響電機的使用壽命而且消耗較多的電量.系統在設計時在電機選型上會留有一定的餘量,電機的速度是固定不變,但在實際使用過程中,有時要以較低或者較高的速度運行,因此進行變頻改造是非常有必要的。變頻器可實現電機軟啟動、補償功率因素。
五、變頻器的常用的控制方式
變頻調速技術是現代電力傳動技術的重要發展方向,而作為變頻調速系統的核心—變頻器的性能也越來越成為調速性能優劣的決定因素,除了變頻器本身製造工藝的「先天」條件外,對變頻器採用什麼樣的控制方式也是非常重要的。下面從工業實際出發,綜述了近年來各種變頻器控制方式的特點。
1、 非智能控制方式
在交流變頻器中使用的非智能控制方式有V/f協調控制、轉差頻率控制、矢量控制、直接轉矩控制等。
(1) V/f控制
V/f控制是為了得到理想的轉矩-速度特性,基於在改變電源頻率進行調速的同時,又要保證電動機的磁通不變的思想而提出的,通用型變頻器基本上都採用這種控制方式。V/f控制變頻器結構非常簡單,但是這種變頻器採用開環控制方式,不能達到較高的控制性能,而且,在低頻時,必須進行轉矩補償,以改變低頻轉矩特性。
(2) 轉差頻率控制
轉差頻率控制是一種直接控制轉矩的控制方式,它是在V/f控制的基礎上,按照知道異步電動機的實際轉速對應的電源頻率,並根據希望得到的轉矩來調節變頻器的輸出頻率,就可以使電動機具有對應的輸出轉矩。這種控制方式,在控制系統中需要安裝速度傳感器,有時還加有電流反饋,對頻率和電流進行控制,因此,這是一種閉環控制方式,可以使變頻器具有良好的穩定性,並對急速的加減速和負載變動有良好的響應特性。
(3) 矢量控制
矢量控制是通過矢量坐標電路控制電動機定子電流的大小和相位,以達到對電動機在d、q、0坐標軸系中的勵磁電流和轉矩電流分別進行控制,進而達到控制電動機轉矩的目的。通過控制各矢量的作用順序和時間以及零矢量的作用時間,又可以形成各種PWM波,達到各種不同的控制目的。例如形成開關次數最少的PWM波以減少開關損耗。目前在變頻器中實際應用的矢量控制方式主要有基於轉差頻率控制的矢量控制方式和無速度傳感器的矢量控制方式兩種。
基於轉差頻率的矢量控制方式與轉差頻率控制方式兩者的定常特性一致,但是基於轉差頻率的矢量控制還要經過坐標變換對電動機定子電流的相位進行控制,使之滿足一定的條件,以消除轉矩電流過渡過程中的波動。因此,基於轉差頻率的矢量控制方式比轉差頻率控制方式在輸出特性方面能得到很大的改善。但是,這種控制方式屬於閉環控制方式,需要在電動機上安裝速度傳感器,因此,應用範圍受到限制。
無速度傳感器矢量控制是通過坐標變換處理分別對勵磁電流和轉矩電流進行控制,然後通過控制電動機定子繞組上的電壓、電流辨識轉速以達到控制勵磁電流和轉矩電流的目的。這種控制方式調速範圍寬,啟動轉矩大,工作可靠,操作方便,但計算比較複雜,一般需要專門的處理器來進行計算,因此,實時性不是太理想,控制精度受到計算精度的影響。
(4) 直接轉矩控制
直接轉矩控制是利用空間矢量坐標的概念,在定子坐標系下分析交流電動機的數學模型,控制電動機的磁鏈和轉矩,通過檢測定子電阻來達到觀測定子磁鏈的目的,因此省去了矢量控制等複雜的變換計算,系統直觀、簡潔,計算速度和精度都比矢量控制方式有所提高。即使在開環的狀態下,也能輸出100%的額定轉矩,對於多拖動具有負荷平衡功能。
(5) 最優控制
最優控制在實際中的應用根據要求的不同而有所不同,可以根據最優控制的理論對某一個控制要求進行個別參數的最優化。例如在高壓變頻器的控制應用中,就成功的採用了時間分段控制和相位平移控制兩種策略,以實現一定條件下的電壓最優波形。
(6)其他非智能控制方式
在實際應用中,還有一些非智能控制方式在變頻器的控制中得以實現,例如自適應控制、滑模變結構控制、差頻控制、環流控制、頻率控制等。
2、 智能控制方式
智能控制方式主要有神經網絡控制、模糊控制、專家系統、學習控制等。在變頻器的控制中採用智能控制方式在具體應用中有一些成功的範例。
(1) 神經網絡控制
神經網絡控制方式應用在變頻器的控制中,一般是進行比較複雜的系統控制,這時對於系統的模型了解甚少,因此神經網絡既要完成系統辨識的功能,又要進行控制。而且神經網絡控制方式可以同時控制多個變頻器,因此在多個變頻器級聯時進行控制比較適合。但是神經網絡的層數太多或者算法過於複雜都會在具體應用中帶來不少實際困難。
(2) 模糊控制
模糊控制算法用於控制變頻器的電壓和頻率,使電動機的升速時間得到控制,以避免升速過快對電機使用壽命的影響以及升速過慢影響工作效率。模糊控制的關鍵在於論域、隸屬度以及模糊級別的劃分,這種控制方式尤其適用於多輸入單輸出的控制系統。
(3) 專家系統
專家系統是利用所謂「專家」的經驗進行控制的一種控制方式,因此,專家系統中一般要建立一個專家庫,存放一定的專家信息,另外還要有推理機制,以便於根據已知信息尋求理想的控制結果。專家庫與推理機制的設計是尤為重要的,關係著專家系統控制的優劣。應用專家系統既可以控制變頻器的電壓,又可以控制其電流。
(4) 學習控制
學習控制主要是用於重複性的輸入,而規則的PWM信號(例如中心調製PWM)恰好滿足這個條件,因此學習控制也可用於變頻器的控制中。學習控制不需要了解太多的系統信息,但是需要1~2個學習周期,因此快速性相對較差,而且,學習控制的算法中有時需要實現超前環節,這用模擬器件是無法實現的,同時,學習控制還涉及到一個穩定性的問題,在應用時要特別注意。
小編碎碎念:隨著市場的擴大和用戶端需求的多樣化,國內變頻器產品的功能在不斷完善和增加,集成度和系統化越來越高,在實際應用中也都是能夠滿足客戶要求的,所以如果沒有十分特殊的情況,選擇國產的性價比還是可以的。