時光派抗衰研究院撰稿
NAD+家族的NMN和NR借著股市的威勢乘風破浪,它的「一奶同胞」兄弟NADH也在蠢蠢欲動,打著「1片頂4片NMN的第三代NAD+」、「還原型NAD+抗氧化」、「直接轉化NAD+強力延壽」的旗號瘋狂碰瓷,妄圖在富人續命市場分上一杯羹……
正文:
NAD+與NADH:有聯繫,但區別更大
煙醯胺腺嘌呤二核苷酸(NAD+)是生物體內許多脫氫酶(/氧化酶)的輔酶,有傳遞氫和電子的功能,在接收別的物質被氧化後脫下來的氫和電子之後,NAD+就變為了還原型煙醯胺腺嘌呤二核苷酸(NADH)[1]。
圖註:NAD+的加氫和NADH的脫氫反應相互轉化
NAD+和NADH在細胞內各種基礎生化反應中相互轉化。但一般來說,細胞質內的NAD+/NADH比值約為60-700,線粒體內的NAD+/NADH比值保持在7-8[2,3]。這種NAD+明顯多於NADH的數量關係才能維持正常的線粒體膜電位,保證正常的線粒體功能和細胞能量代謝[4-6]。
圖註:NAD+/NADH參與糖代謝和生物氧化(@TRENDS in Endocrinology & Metabolism, 時光派編譯)
NAD+/NADH的生物學作用,就同「綠巨人浩克」與變身前「班納」一樣,之間有聯繫,可區別也很大:至少,NAD+通過激活長壽蛋白Sirtuins來延緩衰老的功能,NADH就是沒有的。
圖註:NAD+與NADH的生物學作用(WEIHAI YANG, et al.)
其中還值得拿出來一講的是NADH會引發「還原性應激」,很多人看到NADH名字裡的「還原型」三個字,會想當然地把它認定為還原劑。但是研究已經證明了,過量的NADH會加速ROS生成,加重氧化[10,11],「還原型」反倒成了NADH的原罪。
圖註:NAD+/NADH與氧化還原和衰老過程的關係(WEIHAI YANG, et al.)
NADH還可能讓你的「長壽藥」白吃
目前針對NAD+的研究已經證實了:隨著年齡增長,某些組織內NAD+不斷減少;很多人不知道的是,NADH在這個過程中也在不斷增加,與老化相關[18]。
圖註:人類腦細胞中總NAD、NAD+和NADH水平隨年齡變化[18]
NAD+和NADH之間還有著一種「此消彼長」的關係:一項研究讓受試者補充NADH,在用藥8周後測定血液單核細胞內NAD+和NADH含量,結果發現細胞內NAD+水平下降,NADH水平上升,NAD+/NADH比值下降[19]。
圖註:補充NADH 8周後血單核細胞內NAD+、NADH水平和NAD+/NADH變化[19]
熱量限制(CR)是目前公認最有效的「續命」方式,它就是通過調節Sir2降低NADH水平、升高NAD+/NADH比值來起到延壽的作用[20]。
圖註:NAD+/NADH ——「天平的兩端」
綜上所述,我們認為:以目前的研究來看,外源性補充NADH會提升細胞內NADH水平,降低NAD+水平,可能不利於延長壽命。如果和NMN、NR這類NAD+補充劑「長壽藥」同服,最終的結果是花了雙份錢卻 「吃了個寂寞」。
把NADH包裝成「長壽藥」的商人,其實更應該多吃吃自家產品——「救智、補腦」。
NADH真正的跑道:可能是神經 「萬靈藥」,卻並非「聰明藥」
NADH真正「跑起來」,是學者們發現了NADH能間接地為酪氨酸羥化酶催化的多巴胺合成限速步驟提供還原當量,促進內源性左旋多巴(多巴胺前體物質)的合成[21];同時也有證據表明,NADH能夠增加血漿左旋多巴的生物利用度[22]。NADH還有著調節線粒體能量代謝、調節鈣穩態、調節大腦基因表達、抗凋亡等多種作用,讓它成為有望成為攀越神經系統疾病治療這座高峰的「種子選手」。
上世紀90年代以來,用NADH治療各種神經系統疾病有效的研究報導一時間如雨後春筍般出現——改善帕金森病(PD)[23,24]、阿爾茨海默症(AD,「老年痴呆」)[22]、「時差病」[25]和慢性疲勞症候群(CFS)[26,27];甚至有望將其用於治療亨廷頓舞蹈病(HD)、腦外傷後/腦梗死後腦損傷、多發性硬化症(MS)和腦瘤等「絕症」 [28-36]。
多巴胺與學習和記憶有著千絲萬縷的聯繫[37,38],成就了今天NADH在保健品領域「考生必備『聰明藥』」的地位,很多人試圖服用它來集中注意力、提升工作學習效率。
圖註:某寶上的NADH「聰明藥」廣告
但是,目前的研究只證實了服用NADH可能改善病理狀態下(AD、CFS和時差調整狀態)患者的認知功能,在正常人身上的有效性和安全性的研究尚缺。因此,我們也不主張正常人「拿到半截就開跑」,將NADH作為提高記憶和學習能力的補劑來服用。
時光派點評
對人體自身奧秘的探索過程,和那些試圖解秘森羅萬象的所有科學研究過程都一樣——就像拼圖遊戲,是用碎片去構擬還原出一個全景,這個過程中難免會拼錯那麼一塊兩塊,需要不斷地去修正;我們現在所能看到的是現有拼圖的模樣,可能只是成品的冰山一角。
所以,我們只能告訴你,在結合現有研究證據分析之後,我們認為:NADH有潛力成為一款治療許多神經系統疾病的好藥,但未必利於延壽,不建議未患影響認知功能的疾病的正常人把NADH當作補劑去服用。希望NADH早日「青春歸位」,不會再被用來騙人,回到屬於自己的領域去發光發熱!
每次與NAD+代謝流上的相關物質接觸,筆者總能聞到一股難以名狀的「怪味兒」:NAD+利益相關者把NADH貶得一錢不值,NADH把NAD+妖化成洪水猛獸,NAD+各類補充劑再明爭暗鬥……
我想,負責任的科普應該是羅列事實而臧否兩論。我們不反對靠科普來變現,所以我們也開起了自己的小店;但是以撈錢為目的而扭曲事實去科普,說實話,真的有點臭。
參考文獻:
[1] Mitchell P: Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 1979; 206:1148.
[2] Veech, R.L. et al. (1972) The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J. 127, 387–397.
[3] Williamson, D.H. et al. (1967) The redox state of free nicotinamide- adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527.
[4] Ying,W.(2008)NAD+/NADH and NADP+/NADPH incellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10, 179–206.
[5] Cheng, Z. et al. (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol. Metab. 21, 589–598.
[6] Houtkooper,R.H.etal.(2010)The secret life of NAD+:an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194–223.
[7] Kirsch M and De Groot H. NAD(P)H, a directly operating antioxidant? F ASEB J 15: 1569–1574, 2001.
[8] McGuinness ET and Butler JR. NAD+ kinase—-a review. Int J Biochem 17: 1–11, 1985.
[9] Olek RA, Ziolkowski W, Kaczor JJ, Greci L, Popinigis J, and Antosiewicz J. Antioxidant activity of NADH and its analogue—an in vitro study. J Biochem Mol Biol 37: 416–421, 2004.
[10] Jaeschke H, Kleinwaechter C, and Wendel A. NADH-dependent reductive stress and ferritin-bound iron in allyl alcohol-induced lipid peroxidation in vivo: the protective effect of vitamin E. Chem Biol Interact 81: 57–68, 1992.
[11] Zhang Z, Blake DR, Stevens CR, Kanczler JM, Winyard PG, Symons MC, Benboubetra M, and Harrison R. A reappraisal of xanthine dehydrogenase and oxidase in hypoxic reperfusion injury: the role of NADH as an electron donor. Free Radic Res 28: 151–164, 1998.
[12] Kaplin AI, Snyder SH, and Linden DJ. Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium. J Neurosci 16: 2002–2011, 1996.
[13] Zima AV, Copello JA, and Blatter LA. Differential modulation of cardiac and skeletal muscle ryanodine receptors by NADH. FEBS Lett 547: 32–36, 2003.
[14] Zhang Q, Piston DW, and Goodman RH. Regulation of corepressor function by nuclear NADH. Science 295: 1895–1897, 2002.
[15] Rutter J, Reick M, Wu LC, and McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293: 510–514, 2001.
[16] Nadlinger K, Birkmayer J, Gebauer F, and Kunze R. Influence of reduced nicotinamide adenine dinucleotide on the production of interleukin-6 by peripheral human blood leukocytes. Neuroim-munomodulation 9: 203–208, 2001.
[17] Zhu K, Swanson RA, and Ying W. NADH can enter into astrocytes and block poly (ADP-ribose) polymerase-1-mediated astrocyte death. Neuroreport 16: 1209–1212, 2005.
[18] Zhu, X.-H., Lu, M., Lee, B.-Y., Ugurbil, K., & Chen, W. (2015). In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proceedings of the National Academy of Sciences, 112(9), 2876–2881.
[19] Castro-Marrero, J., Cordero, M. D., Segundo, M. J., Sáez-Francàs, N., Calvo, N., Román-Malo, L., … Alegre, J. (2015). Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome? Antioxidants & Redox Signaling, 22(8), 679–685.
[20] Lin, S. J., E. Ford, M. Haigis, G. Liszt & L. Guarente: Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev, 18, 12-6(2004).
[21] Swerdlow, R. H.: Is NADH effective in the treatment of Parkinson's disease? Drugs Aging, 13, 263-8(1998).
[22] Demarin V, Podobnik SS, Storga Tomic D, and Kay G. Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res 30: 27–33, 2004.
[23] Kuhn W, Muller T, Winkel R, Danielczik S, Gerstner A, Hacker R, Mattern C, and Przuntek H. Parenteral application of NADH in Parkinson’s disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis. J Neural Transm 103: 1187–1193, 1996.
[24] Birkmayer, J. G., C. Vrecko, D. Volc & W. Birkmayer: Nicotinamide adenine dinucleotide (NADH)——a new therapeutic approach to Parkinson's disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl, 146, 32-5(1993).
[25] NASA: Stabilized NADH as a Countermeasure for Jet Lag. Report/Patent Number JSC-CN-6528.
[26] Forsyth, L. M., Preuss, H. G., MacDowell, A. L., Chiazze, L., Birkmayer, G. D., & Bellanti, J. A. (1999). Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Annals of Allergy, Asthma & Immunology, 82(2), 185–191.
[27] Alegre, J., Rosés, J. M., Javierre, C., Ruiz-Baqués, A., Segundo, M. J., & Fernández de Sevilla, T. (2010). Nicotinamida adenina dinucleótido (NADH) en pacientes con síndrome de fatiga crónica. Revista Clínica Espa ola, 210(6), 284–288.
[28] Vis, J. C., E. Schipper, R. T. de Boer-van Huizen, M. M. Verbeek, R. M. de Waal, P. Wesseling, H. J. ten Donkelaar & B. Kremer: Expression pattern of apoptosis-related markers in Huntington's disease. Acta Neuropathol (Berl), 109, 321-8(2005).
[29] Virag, L. & C. Szabo: The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol Rev, 54, 375-429(2002).
[30] Satchell, M. A., X. Zhang, P. M. Kochanek, C. E. Dixon, L. W. Jenkins, J. Melick, C. Szabo & R. S. Clark: A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14-3-3gamma. J Neurochem, 85, 697-708(2003).
[31] LaPlaca, M. C., J. Zhang, R. Raghupathi, J. H. Li, F. Smith, F. M. Bareyre, S. H. Snyder, D. I. Graham & T. K. McIntosh: Pharmacologic inhibition of poly (ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma, 18, 369-76(2001).
[32] Kofler, J., T. Otsuka, Z. Zhang, R. Noppens, M. R. Grafe, D. W. Koh, V. L. Dawson, J. M. de Murcia, P. D. Hurn & R. J. Traystman: Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. J Cereb Blood Flow Metab, 26, 135-41(2006).
[33] Gilgun-Sherki, Y., E. Melamed & D. Offen: The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol, 251, 261-8(2004).
[34] Kauppinen, T. M., S. W. Suh, C. P. Genain & R. A. Swanson: Poly (ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. J Neurosci Res, 81, 190-8(2005).
[35] Tentori, L., I. Portarena, F. Torino, M. Scerrati, P. Navarra & G. Graziani: Poly (ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Glia, 40, 44-54(2002).
[36] Tentori, L., C. Leonetti, M. Scarsella, G. D'Amati, M. Vergati, I. Portarena, W. Xu, V. Kalish, G. Zupi, J. Zhang & G. Graziani: Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin Cancer Res, 9, 5370-9(2003).
[37] Liang, L., Wang, R., & Zhang, Z. (2012). The Effect of Dopamine on Working Memory. Neural Processing Letters, 35(3), 257–263.
[38] Roffman, J. L., Tanner, A. S., Eryilmaz, H., Rodriguez-Thompson, A., Silverstein, N. J., Ho, N. F., … Catana, C. (2016). Dopamine D1 signaling organizes network dynamics underlying working memory. Science Advances, 2(6), e1501672–e1501672.