電子設計基礎:電阻電橋基礎(一)

2020-11-23 電子產品世界

  概述

  惠斯通電橋在電子學發展的早期用來精確測量電阻值,無需精確的電壓基準或高阻儀表。實際應用中,電阻電橋很少按照最初的目的使用,而是廣泛用於傳感器檢測領域。本文分析了電橋電路受歡迎的原因,並討論在測量電橋輸出時的一些關鍵因素。

  注意:本文分兩部分,第一部分回顧了基本的電橋架構,並將重點放在低輸出信號的電橋電路,比如導線或金屬箔應變計。第二部分, 「電阻電橋基礎(二)」介紹使用矽應變儀的高輸出信號電橋。

  基本的電橋配置

  圖1是基本的惠斯通電橋,圖中電橋輸出Vo是Vo+和Vo-之間的差分電壓。使用傳感器時,隨著待測參數的不同,一個或多個電阻的阻值會發生改變。阻值的改變會引起輸出電壓的變化,式1給出了輸出電壓Vo,它是激勵電壓和電橋所有電阻的函數。

  

  圖1. 基本惠斯通電橋框圖

  式1: Vo = Ve(R2/(R1 + R2) - R3/(R3 + R4))

  式1看起來比較複雜,但對於大部分電橋應用可以簡化。當Vo+和Vo-等於Ve的1/2時,電橋輸出對電阻的改變非常敏感。所有四個電阻採用同樣的標稱值R,可以大大簡化上述公式。待測量引起的阻值變化由R的增量或dR表示。帶dR項的電阻稱為「有源」電阻。在下面四種情況下,所有電阻具有同樣的標稱值R,1個、2個或4個電阻為有源電阻或帶有dR項的電阻。推導這些公式時,dR假定為正值。如果實際阻值減小,則用-dR表示。在下列特殊情況下,所有有源電阻具有相同的dR值。

  四個有源元件

  第一種情況是所有四個電橋電阻都是有源元件,R2和R4的阻值隨著待測量的增大而增大,R1和R3的阻值則相應減小。這種情況常見於採用四個應變計的壓力檢測。施加壓力時,應變計的物理方向決定數值的增加或減少,式2給出了這種配置下可以得到的輸出電壓(Vo)與電阻變化量(dR)的關係,呈線性關係。這種配置能夠提供最大的輸出信號,值得注意的是:輸出電壓不僅與dR呈線性關係,還與dR/R呈線性關係。這一細微的差別非常重要,因為大部分傳感器單元的電阻變化與電阻的體積成正比。

  式2: Vo = Ve(dR/R)帶四個有源元件的電橋

  一個有源元件

  第二種情況僅採用一個有源元件(式3),當成本或布線比信號幅度更重要時,通常採用這種方式。

  式3:Vo = Ve(dR/(4R+2dR))帶一個有源元件的電橋

  正如所料,帶一個有源元件的電橋輸出信號幅度只有帶四個有源元件的電橋輸出幅度的1/4。這種配置的關鍵是在分母中出現了dR項,所以會導致非線性輸出。這種非線性很小而且可以預測,必要時可以通過軟體校準。

  兩個具有相反響應特性的有源元件

  第三種情況如式4所示,包含兩個有源元件,但阻值變化特性相反(dR和-dR)。兩個電阻放置在電橋的同一側(R1和R2,或R3和R4)。正如所料,此時的靈敏度是單有源元件電橋的兩倍,是四有源元件電橋的一半。這種配置下,輸出是dR和dR/R的線性函數,分母中沒有dR項。

  式4:Vo = Ve(dR/(2R))具有相反響應特性的兩個有源元件

  在上述第二種和第三種情況下,只有一半電橋處於有效的工作狀態。另一半僅僅提供基準電壓,電壓值為Ve電壓的一半。因此,四個電阻實際上並一定具有相同的標稱值。重要的是電橋左側的兩個電阻間匹配以及電橋右側的兩個電阻間匹配。

  兩個相同的有源元件

  第四種情況同樣採用兩個有源元件,但這兩個元件具有相同的響應特性,它們的阻值同時增大或減小。為了有效工作,這些電阻必須位於電橋的對角位置(R1和R3,或R2和R4)。這種配置的明顯優勢是將同樣類型的有源元件用在兩個位置,缺點是存在非線性輸出,式5中的分母中含有dR項。

  式5:Vo = Ve(dR/(2R+dR)在電壓驅動的電橋中有兩個相同的有源元件

  這個非線性是可以預測的,而且,可以通過軟體或通過電流源(而不是電壓源)驅動電橋來消除非線性特性。式6中,Ie是激勵電流,值得注意的是:式6中的Vo僅僅是dR的函數,而不是上面提到的與dR/R成比例。

  式6: Vo = Ie(dR/2)在電流驅動的電橋中有兩個相同的有源元件

  了解上述四種不同檢測元件配置下的結構非常重要。但很多時候傳感器內部可能存在配置未知的電橋。這種情況下,了解具體的配置不是很重要。製造商會提供相關信息,比如靈敏度的線性誤差、共模電壓等。為什麼將電橋作為首選方案? 通過下面的例子可以很容易地回答這個問題。

  測壓元件

  電阻橋的一個常用例子是帶有四個有源元件的測壓單元。四個應力計按照電橋方式配置並固定在一個剛性結構上,在該結構上施加壓力時會發生輕微變形。有負荷時,兩個應力計的值會增加,而另外兩個應力計的值會減小。這個阻值的改變很小,在1V激勵電壓下,測壓單元的滿幅輸出是2mV。從式2我們可以看出相當於阻值滿幅變化的0.2%。如果測壓單元的輸出要求12位的測量精度,則必須能夠精確檢測到1/2ppm的阻值變化。直接測量1/2ppm變化阻值需要21位的ADC。除了需要高精度的ADC,ADC的基準還要非常穩定,它隨溫度的改變不能夠超過1/2ppm。這兩個原因是驅動使用電橋結構的主要原因,但驅動電橋的使用還有一個更重要的原因。

  測壓單元的電阻不僅僅會對施加的壓力產生響應,固定測壓元件裝置的熱膨脹和壓力計材料本身的TCR都會引起阻值變化。這些不可預測的阻值變化因素可能會比實際壓力引起的阻值變化更大。但是,如果這些不可預測的變化量同樣發生在所有電橋電阻上,它們的影響就可以忽略或消除。例如,如果不可預測變化量為200ppm,相當於滿幅的10%。式2中,200ppm的阻值R的變化對於12位測量來說低於1個LSB。很多情況下,阻值dR的變化與R的變化成正比。即dR/R的比值保持不變,因此R值的200ppm變化不會產生影響。R值可以加倍,但輸出電壓不受影響,因為dR也會加倍。

  上述例子表明採用電橋可以簡化電阻值微小改變時的測量工作。以下講述電橋測量電路的主要考慮因素。

  電橋電路的五個關鍵因素

  在測量低輸出信號的電橋時,需要考慮很多因素。其中最主要的五個因素是:

  激勵電壓

  共模電壓

  失調電壓

  失調漂移

  噪聲

  激勵電壓

  式1表明任何橋路的輸出都直接與其供電電壓成正比。因此,電路必須在測量期間保持橋路的供電電壓恆定(穩壓精度與測量精度相一致),必須能夠補償電源電壓的變化。補償供電電壓變化的最簡單方法是從電橋激勵獲取ADC的基準電壓。圖2中,ADC的基準電壓由橋路電源分壓後得到。這會抑制電源電壓的變化,因為ADC的電壓解析度會隨著電橋的靈敏度而改變。

  

  圖2. 與Ve成比例的ADC基準電壓。可以消除由於Ve變化而引起的增益誤差

  另外一種方法是使用ADC的一個額外通道測量電橋的供電電壓,通過軟體補償電橋電壓的變化。式7所示為修正後的輸出電壓(Voc),它是測量輸出電壓(Vom)、測量的激勵電壓(Vem)以及校準時激勵電壓(Veo)的函數。

  式7: Voc = VomVeo/Vem

  共模電壓

  電橋電路的一個缺點是它的輸出是差分信號和電壓等於電源電壓一半的共模電壓。通常,差分信號在進入ADC前必須經過電平轉換,使其成為以地為參考的信號。如果這一步是必須的,則需注意系統的共模抑制比以及共模電壓受Ve變化的影響。對於上述測壓單元的例子,如果用儀表放大器將電橋的差分信號轉換為單端信號,需要考慮Ve變化的影響。如果Ve容許的變化範圍是2%,電橋輸出端的共模電壓將改變Ve的1%。如果共模電壓偏差限定在精度指標的1/4,那麼放大器的共模抑制必須等於或高於98.3dB。(20log[0.01Ve/(0.002Ve/(40964))] = 98.27)。這樣的指標雖然可以實現,但卻超出了很多低成本或分

相關焦點

  • 【E課堂】電子設計基礎:電阻電橋基礎(一)
    本文講述電橋電路的基礎並演示如何在實際環境中利用電橋電路進行精確測量,文章詳細介紹了電橋電路應用中的一些關鍵問題,比如噪聲、失調電壓和失調電壓漂移、共模電壓以及激勵電壓。本文引用地址:http://www.eepw.com.cn/article/201601/285782.htm  概述  惠斯通電橋在電子學發展的早期用來精確測量電阻值,無需精確的電壓基準或高阻儀表。實際應用中,電阻電橋很少按照最初的目的使用,而是廣泛用於傳感器檢測領域。本文分析了電橋電路受歡迎的原因,並討論在測量電橋輸出時的一些關鍵因素。
  • 電阻電橋基礎知識介紹
    概述  本文第一部分,應用筆記3426主要論述了為什麼要使用電阻電橋,電橋的基本配置,以及一些具有小信號輸出的電橋,例如粘貼絲式或金屬箔應變計
  • 電阻電橋基礎:第一部分
    惠斯通電橋在電子學發展的早期用來精確測量電阻值,無需精確的電壓基準或高阻儀表。實際應用中,電阻電橋很少按照最初的目的使用,而是廣泛用於傳感器檢測領域。這一細微的差別非常重要,因為大部分傳感器單元的電阻變化與電阻的體積成正比。式2: Vo=Ve(dR/R)帶四個有源元件的電橋一個有源元件 第二種情況僅採用一個有源元件(式3),當成本或布線比信號幅度更重要時,通常採用這種方式。
  • 【基礎】電阻電橋(惠斯通電橋)分析及應用
    惠斯通電橋是由四個電阻組成的電橋電路,這四個電阻分別叫做電橋的橋臂,惠斯通電橋利用電阻的變化來測量物理量的變化
  • 電橋測量基礎
    電橋是精密測量電阻或其他模擬量的一種有效的方法。而在晶圓的正面,每一個小薄膜的每個邊上都植入了一個壓敏電阻, 用金屬線把小薄片周邊的四個電阻連接起來就形成一個惠斯登電橋。最後,使用鑽石鋸從晶圓上鋸下各個傳感器。這時,矽傳感器已經初具形態,但還需要配備壓力 埠和連接引線方可使用。這些小傳感器便宜而且相對可靠,但受溫度變化影響較大,而且初始偏移和靈敏度的偏差很大。
  • 電橋測量的基礎知識
    電橋是精密測量電阻或其他模擬量的一種有效的方法。而在晶圓的正面,每一個小薄膜的每個邊上都植入了一個壓敏電阻,用金屬線把小薄片周邊的四個電阻連接起來就形成一個惠斯登電橋。最後,使用鑽石鋸從晶圓上鋸下各個傳感器。這時,矽傳感器已經初具形態,但還需要配備壓力埠和連接引線方可使用。這些小傳感器便宜而且相對可靠,但受溫度變化影響較大,而且初始偏移和靈敏度的偏差很大。
  • 電橋測量基礎(圖)
    電橋是精密測量電阻或其他模擬量的一種有效的方法。而在晶圓的正面,每一個小薄膜的每個邊上都植入了一個壓敏電阻, 用金屬線把小薄片周邊的四個電阻連接起來就形成一個惠斯登電橋。最後,使用鑽石鋸從晶圓上鋸下各個傳感器。這時,矽傳感器已經初具形態,但還需要配備壓力 埠和連接引線方可使用。這些小傳感器便宜而且相對可靠,但受溫度變化影響較大,而且初始偏移和靈敏度的偏差很大。
  • 【基礎】惠斯頓電橋原理及使用方法
    電阻R1,R2,R3,R4叫做電橋的四個臂,G為檢流計,用以檢查它所在的支路有無電流。當G無電流通過時,稱電橋達到平衡。平衡時,四個臂的阻值 滿足一個簡單的關係,利用這一關係就可測量電阻。因而有 I1R1=I2R2;個阻值已知,便可求得第四個電阻。測量時,選擇適當的電阻作為R1和R2,用一個可變電阻作為R3,令被測電阻充當R4,調節R3使 電橋平衡,電阻而且可利用高靈敏度的檢流計來測零,故用電橋測電阻比用歐姆表分條件。電橋不平衡時,G的電流IG與R1,R2,R3,R4有關。利用這一 關係也可根據IG及三個臂的電阻值求得第四個臂的阻值,因此不平衡電橋原則上也可測量電阻。
  • 惠斯通電橋的測量原理_惠斯通電橋原理是怎樣測電阻的
    (又稱單臂電橋)是一種可以精確測量電阻的儀器。右圖所示是一個通用的惠斯通電橋。電阻R1,R2,R3,R4叫做電橋的四個臂,G為檢流計,用以檢查它所在的支路有無電流。當G無電流通過時,稱電橋達到平衡。平衡時,四個臂的阻值滿足一個簡單的關係,利用這一關係就可測量電阻。   惠斯通電橋的測量原理
  • 電阻電橋(惠斯通電橋)分析及應用
    電阻橋定義解釋  惠斯通電橋是由四個電阻組成的電橋電路,這四個電阻分別叫做電橋的橋臂,惠斯通電橋利用電阻的變化來測量物理量的變化,單片機採集可變電阻兩端的電壓然後處理,就可以計算出相應的物理量的變化,是一種精度很高的測量方式。其電路形式如下圖所示。
  • 電子基礎知識
    導讀:本文主要介紹的是電子基礎知識,電子零件種類繁多千差萬別,但主要可分二大類,一類稱之為被動元件,一類稱之為主動元件,被動元件包括電容、電阻、電感、晶振等;主動元件包括:集成電路、二三極體
  • 【技術文章】電阻電橋(惠斯通電橋)分析及應用
    電阻橋定義解釋惠斯通電橋是由四個電阻組成的電橋電路,這四個電阻分別叫做電橋的橋臂,惠斯通電橋利用電阻的變化來測量物理量的變化,單片機採集可變電阻兩端的電壓然後處理,就可以計算出相應的物理量的變化,是一種精度很高的測量方式。其電路形式如下圖所示。
  • GT4518 交流電橋原理和設計實驗儀的應用
    > 於不同頻率範圍.頻率為200Hz以下時可採用諧振式檢流計;音頻範圍內可採用耳機作為平衡指示器;音頻或更高的頻率時也可採用電子指零儀器;也有用電子示波器或交流毫伏表作為平衡指示器的.本實驗採用高靈敏度的電子放大式指零儀,有足夠的靈敏度.指示器指零時,電橋達到平衡.
  • 直流電橋的平衡條件
    直流電橋   直流電橋,是指測量直流電阻或其變化量的電橋。直流電橋是以惠斯登電橋線路為基礎,用精密合金繞線電阻為基準的更新換代產品。數字直流電具有數字萬用表同樣簡便、快速、醒目的特點,還保持了惠斯登電橋準確、穩定、可靠的優點。
  • 實驗三 惠斯通電橋測量電阻
    一、實驗目的學會識別電阻的串並聯關係;了解和認識惠斯通電橋電路,並掌握電橋平衡條件;掌握用惠斯通電橋測量電阻的方法
  • 電阻應變片直流電橋測量電路攻略
    這樣一來,數據採集電 路板的設計成為該數據採集系統的關鍵,我們需要設計專門的數據採集和無線收發裝置。而該測量系統中電阻應變片直流電橋測量電路的設計是一 個關鍵,下面我們將對這一部分進行詳細的分析和設計。  電阻應變片直流電橋測量電路  應變片調理電路由升壓晶片(為晶片提供工作電壓)、電壓基準(穩壓)、電橋、濾波、放大等部分 組成,如圖2 所示。
  • GT6105 雙臂電橋測量低電阻實驗儀應用
    為避免附加電阻的影響,本實驗引入了四端引線法,組成了雙臂電橋(又稱為開爾文電橋),是一種常用的測量低電阻的方法,已廣泛的應用於科技測量中. 一、實驗目的 1、了解四端引線法的意義及雙臂電橋的結構; 2、學習使用雙臂電橋測量低電阻; 3、學習測量導體的電阻率.
  • 詳解用非平衡電橋如何測量電阻
    1、平衡電橋惠斯登電橋(平衡電橋)的原理如圖1所示,調節R3使檢流計G無電流流過時,C、D兩點等電位,電橋平衡,從而得到2、 非平衡電橋非平衡電橋也稱不平衡電橋或微差電橋。圖2為非平衡電橋的原理圖,B、D之間為一負載電阻Rg。
  • 電阻應變片直流電橋測量電路的攻略
    這樣一來,數據採集電 路板的設計成為該數據採集系統的關鍵,我們需要設計專門的數據採集和無線收發裝置。而該測量系統中電阻應變片直流電橋測量電路的設計是一 個關鍵,下面我們將對這一部分進行詳細的分析和設計。  電阻應變片直流電橋測量電路  應變片調理電路由升壓晶片(為晶片提供工作電壓)、電壓基準(穩壓)、電橋、濾波、放大等部分 組成,如圖2 所示。
  • 電子電路設計的基礎知識
    一、 電子電路的設計基本步驟:1、 明確設計任務要求:充分了解設計任務的具體要求如性能指標、內容及要求,明確設計任務。3、 根據設計框架進行電路單元設計、參數計算和器件選擇:具體設計時可以模仿成熟的電路進行改進和創新,注意信號之間的關係和限制;接著根據電路工作原理和分析方法,進行參數的估計與計算;器件選擇時,元器件的工作、電壓、頻率和功耗等參數應滿足電路指標要求,元器件的極限參數必須留有足夠的裕量,一般應大於額定值的1.5倍,電阻和電容的參數應選擇計算值附近的標稱值。