在一般的隔離電源中,光耦隔離反饋是一種簡單、低成本的方式。但對於光耦反饋的各種連接方式及其區別,目前尚未見到比較深入的研究。而且在很多場合下,由於對光耦的工作原理理解不夠深入,光耦接法混亂,往往導致電路不能正常工作。本研究將詳細分析光耦工作原理,並針對光耦反饋的幾種典型接法加以對比研究。
1 常見的幾種連接方式及其工作原理
常用於反饋的光耦型號有TLP521、PC817等。這裡以TLP521為例,介紹這類光耦的特性。
TLP521的原邊相當於一個發光二極體,原邊電流If越大,光強越強,副邊三極體的電流Ic越大。副邊三極體電流Ic與原邊二極體電流If的比值稱為光耦的電流放大係數,該係數隨溫度變化而變化,且受溫度影響較大。作反饋用的光耦正是利用「原邊電流變化將導致副邊電流變化」來實現反饋,因此在環境溫度變化劇烈的場合,由於放大係數的溫漂比較大,應儘量不通過光耦實現反饋。此外,使用這類光耦必須注意設計外圍參數,使其工作在比較寬的線性帶內,否則電路對運行參數的敏感度太強,不利於電路的穩定工作。
通常選擇TL431結合TLP521進行反饋。這時,TL431的工作原理相當於一個內部基準為2.5 V的電壓誤差放大器,所以在其1腳與3腳之間,要接補償網絡。
常見的光耦反饋第1種接法,如圖1所示。圖中,Vo為輸出電壓,Vd為晶片的供電電壓。com信號接晶片的誤差放大器輸出腳,或者把PWM 晶片(如UC3525)的內部電壓誤差放大器接成同相放大器形式,com信號則接到其對應的同相端引腳。注意左邊的地為輸出電壓地,右邊的地為晶片供電電壓地,兩者之間用光耦隔離。
圖1所示接法的工作原理如下:當輸出電壓升高時,TL431的1腳(相當於電壓誤差放大器的反向輸入端)電壓上升,3腳(相當於電壓誤差放大器的輸出腳)電壓下降,光耦TLP521的原邊電流If增大,光耦的另一端輸出電流Ic增大,電阻R4上的電壓降增大,com引腳電壓下降,佔空比減小,輸出電壓減小;反之,當輸出電壓降低時,調節過程類似。
常見的第2種接法,如圖2所示。與第1種接法不同的是,該接法中光耦的第4腳直接接到晶片的誤差放大器輸出端,而晶片內部的電壓誤差放大器必須接成同相端電位高於反相端電位的形式,利用運放的一種特性—— 當運放輸出電流過大(超過運放電流輸出能力)時,運放的輸出電壓值將下降,輸出電流越大,輸出電壓下降越多。因此,採用這種接法的電路,一定要把PWM 晶片的誤差放大器的兩個輸入引腳接到固定電位上,且必須是同向端電位高於反向端電位,使誤差放大器初始輸出電壓為高。
圖2所示接法的工作原理是:當輸出電壓升高時,原邊電流If增大,輸出電流Ic增大,由於Ic已經超過了電壓誤差放大器的電流輸出能力,com腳電壓下降,佔空比減小,輸出電壓減小;反之,當輸出電壓下降時,調節過程類似。