基於FPGA的太陽跟蹤器的設計及實現

2020-11-28 電子產品世界

0 引言
太陽能是一種清潔無汙染的能源,取之不盡,用之不竭,發展前景廣闊。但是太陽能具有間歇性及強度和方向不確定的特點,給太陽能的收集帶來了一定困難。採用太陽跟蹤裝置可以使太陽光線始終與接收面保持垂直,提高太陽能設備的能量接收效率,從而提高太陽能利用率。
本設計採用傳統的視日運動跟蹤法,利用Xilinx公司提供的FPGA開發環境ISE,設計完成了基於XC3S1500開發板的太陽能自動跟蹤系統,以實現對太陽的全天候、全自動、實時精確控制。

1 視日運動跟蹤法
視日運動跟蹤法是根據地日運行軌跡,採用赤道坐標系或地平坐標系描述太陽相對地球的位置。一般在雙軸跟蹤中極軸式跟蹤採用赤道坐標系,高度角-方位角式跟蹤採用地平坐標系。
1.1 極軸式跟蹤
赤道坐標系是人在地球以外的宇宙空間裡,觀測太陽相對於地球的位置。這時太陽位置是相對於赤道平面而言,用赤緯角和時角這兩個坐標表示。太陽中心與地球中心的連線,即太陽光線在地球表面直射點與地球中心的連線與在赤道平面上的投影的夾角稱為太陽赤緯角。它描述地球以一定的傾斜度繞太陽公轉而引起二者相對位置的變化。一年中,太陽光線在地球表面上的垂直照射點的位置在南回歸線、赤道和北回歸線之間往復運動,使該直射點與地心連線在赤道面上的夾角也隨之重複變化。赤緯角在一年中的變化用式(1)計算:

式中:δ為一年中第n天的赤緯角,單位:(°);n為一年中的日期序號,單位:日。
時角是描述地球自轉而引起的日地相對位置的變化。地球自轉一周為360°,對應的時間為24 h,故每小時對應的時角為15°。日出、日落時間的時角最大,正午時角為零。計算公式如下:

式中:ω為時角,單位:(°);T為當地時間,單位:h。
根據上述方法可以計算出地球上任意地點和時刻的太陽的赤緯角和時角,由此可建立極軸式跟蹤,對於太陽跟蹤系統來說,採光板的一軸與地球自轉軸相平行,稱為極軸,另外一軸與其垂直。工作時採光板繞地球自轉軸旋轉,其轉速的設定為與地球的自轉速度相同,方向相反。為了適應太陽赤緯角的變化,採光板圍繞與地球自轉軸垂直的軸做俯仰運動。此種跟蹤方式原理簡單,但是由於採光板的重量不通過極軸軸線,極軸支撐結構的設計比較困難,因此本設計沒有選用極軸式跟蹤。
1.2 地平坐標系
地平坐標系用高度角和方位角來描述太陽的位置,已知太陽赤道坐標系中的赤緯角和時角,可以通過球面三角形的變換關係得到地平坐標系的太陽的高度角和方位角。如圖1所示,該天球是以觀測者為球心,任意距離為半徑的假想球,對於天球上各點之間的距離,只討論它們之間的角距而不考慮它們的線長。M和N分別為天球上的南北天極。P點為觀測者的鉛垂線與天球的交點,P點的地理緯度為φ,S為太陽在天球中的位置。S的赤緯度為δ,觀測者的鉛垂線OP與地心與太陽連線的夾角叫做天頂角,天頂角和太陽的高度角互補。角A為太陽的方位角。

本文引用地址:http://www.eepw.com.cn/article/191552.htm


相關焦點

  • 基於DSP和FPGA的機器人聲控系統設計與實現
    2 系統硬體總體設計 系統的硬體功能是實現語音指令的採集和步進電機的驅動控制,為系統軟體提供開發和調試平臺。如圖1所示。 系統硬體分為語音信號的採集和播放,基於dsp的語音識別,fpga動作指令控制、步進電機及其驅動、dsp外接快閃記憶體晶片,jtag口仿真調試和鍵盤控制幾個部分。
  • 基於FPGA高精度浮點運算器的FFT設計與仿真
    摘要 基於IEEE浮點表示格式及FFT算法,提出一種基2FFT的FPGA方法,完成了基於FPGA高精度浮點運算器的FFT的設計。利用VHDL語言描述了蝶形運算過程及地址產生單元,其仿真波形基本能正確的表示輸出結果。
  • 基於FPGA IP核的FFT實現
    目前現有的文獻大多致力於研究利用FFT算法做有關信號處理、參數估計、F+FT蝶形運算單元與地址單元設計、不同算法的FFT實現以及FFT模型優化等方面。而FPGA廠商Altera公司和Xilinx公司都研製了FFT IP核,性能非常優越。在FFT的硬體實現中,需要考慮的不僅僅是算法運算量,更重要的是算法的複雜性、規整性和模塊化,而有關利用FFT IP核實現FFT算法卻涉及不多。
  • 基於FPGA的無損圖像壓縮系統設計
    編者按:  摘要:本文簡要介紹了圖像壓縮的重要性和常用的無損圖像壓縮算法,分析了快速高效無損圖像壓縮算法(FELICS)的優勢,隨後詳細分析了該算法的編碼步驟和硬體實現方案,最後公布了基於該方案的FPGA性能指標。
  • 基於FPGA的複數浮點協方差矩陣實現
    故目前國內外協方差運算的FPGA實現都是採用定點運算方式。 在所有運算都是定點運算的情況下,每次乘法之後數據位寬都要擴大一倍。若相乘後的數據繼續做加減運算,為了保證數據不溢出,還必須將數據位寬擴展一位,而協方差矩陣的運算核心就是乘累加單元,隨著採樣點數的增加,位寬擴展呈線性增加。最終導致FPGA器件資源枯竭,無法實現設計。
  • 基於FPGA的伺服驅動器分周比設計與實現
    為此提出一種基於FPGA的整數分周比實現方法。該方法邏輯結構簡單,配置靈活,易於擴展,具有很高的實用價值。  1 電子齒輪比與分周比  電子齒輪比與分周比是數控工具機和數控加工中心中一個很重要的概念。國外的各種驅動器一般都帶有分周比功能,對利用FPGA實現分周比進行研究和探討,電子齒輪比、分周比功能示意圖如圖1所示。
  • 基於FPGA的實時中值濾波器硬體實現
    在許多實際應用場合,如高清視頻監控、X光圖像的降噪等,需要快速且實時地進行中值濾波,軟體實現達不到實時處理的要求,因此選用硬體實現。 在硬體實現上,文獻[1]、[2]等採用行延遲的方法形成鄰域數據,以實現3×3的中值濾波。文獻[7]為了提高紅外成像跟蹤器設計了大窗口的中值濾波器。
  • 基於fpga二維小波變換核的實時可重構電路
    項目背景及可行性分析本文引用地址:http://www.eepw.com.cn/article/266432.htm  2.1 項目名稱及摘要:  基於fpga二維小波變換核的實時可重構電路  現場可編程門陣列為可進化設計提供了一個理想的模板
  • 基於FPGA的巴特沃茲IIR數字帶通濾波器設計
    數字濾波器通常採用計算機軟體、專用數字濾波器、DSP器件或可編程邏輯器件(如FPGA) 實現。因為,用FPGA實現數字濾波器具有實時性強、靈活性高、處理速度快以及小批量生產成本低等優點,所以得到了較為廣泛的應用。本文以巴特沃思數字帶通濾波器為例,較為詳細地介紹了其設計和實現方法。給定巴特沃茲數字帶通濾波器的抽樣頻率為500Hz,上、下邊帶截止頻率分別為150Hz和30Hz.
  • 基於FPGA的RCN226絕對式編碼器通信接口設計
    絕對式編碼器廠家大多為其編碼器配套了接收晶片,實現串行編碼到並行編碼的轉換,便於控制器的讀取操作。但是此類晶片通常價格比較昂貴,大約佔絕對式編碼器價格的四分之一。目前國內外高端交流伺服系統中普遍採用FPGA+DSP結構。
  • 基於Spartan-6 FPGA的Sinc3 Filter設計
    Sinck結構的濾波器適合Σ-Δ調製器使用,可有效濾除高頻噪聲,且其實現不需要乘法即可完成。其原理結構如圖1所示。 濾波器相關文章:濾波器原理 fpga
  • 基於FPGA+MATLAB的串行多階FIR濾波器設計
    為說明使用FPGA實現FIR的靈活性,文中列舉了一個多階串行FIR濾波器實例,並給出主要的原始碼和相關模塊的時序和功能說明,最後使用Matlab和Quartusii聯合仿真驗證了FPGA硬濾波器工程的正確性。
  • 如何在FPGA中實現狀態機
    FPGA常常用於執行基於序列和控制的行動,比如實現一個簡單的通信協議。對於設計人員來說,滿足這些行動和序列要求的最佳方法則是使用狀態機。狀 態機是在數量有限的狀態之間進行轉換的邏輯結構。一個狀態機在某個特定的時間點只處於一種狀態。
  • 基於FPGA與有限狀態機的高精度測角系統的設計與實
    光電編碼器是利用光柵衍射原理實現位移數字變換的,光電編碼器作為一種高精度的測角傳感器已普遍應用於伺服跟蹤系統中,它具有精度高、響應快、性能穩定可靠等優點。光電編碼器按編碼方式主要分為兩類:增量式與絕對式。由於增量式光電編碼器成本低、測角的精度高,因此本系統的增量式光電編碼器選用Renishaw公司的高精度圓光柵。
  • 一種基於FPGA的全光纖電流互感器控制電路設計
    隨著FPGA技術的發展,FPGA不僅被用來進行精密時序控制,而且可以實現複雜數位訊號處理功能。本文利用FPGA來實現精密時序控制的同時,實現非常複雜的信號處理算法,並以FPGA為核心器件完成光纖電流互感器信號檢測和控制電路設計,利用該電路控制光纖電流互感器傳感頭進行電流測試和標定。試驗結果表明,系統控制精度達到0.2 S級測量準確度的要求。
  • 聲納圖像動態範圍擴展與FPGA實現
    基於課題組研製的多波束成像聲納原理樣機的研製,分析了數據動態範圍壓縮導致圖像細節丟失的原因及其對成像質量的影響,採用JPL快速平方根近似算法改善了開方運算FPGA實現過程的資源佔用和系統延時。最後,對改進設計方案進行了實驗驗證,通過多波束成像聲納系統的消聲水池實驗證明了本文動態範圍擴展方法的有效性和可行性,系統成像質量改善明顯,達到優化設計的預期目標。
  • 一種基於FPGA的實時紅外圖像預處理方法
    針對這一問題,提出一種基於FPGA的實時紅外圖像預處理方法。該方法採用了流水線技術來並行完成非均勻校正、空間濾波、直方圖統計等多個紅外圖像預處理算法,對系統結構進行了改進和優化。經過實驗測試驗證,該方法合理可行,能夠實時高效地完成紅外圖像預處理任務。與DSP圖像預處理系統相比可以節約將近50%的處理時間。
  • 用FPGA實現FFT算法
    FFT算法除了必需的數據存儲器ram和旋轉因子rom外,仍需較複雜的運算和控制電路單元,即使現在,實現長點數的FFT仍然是很困難。本文提出的FFT實現算法是基於FPGA之上的,算法完成對一個序列的FFT計算,完全由脈衝觸發,外部只輸入一脈衝頭和輸入數據,便可以得到該脈衝頭作為起始標誌的N點FFT輸出結果。
  • 基於FPGA的高效FIR濾波器設計與實現
    摘要: 給出了一種基於FPGA的數字濾波器的設計方法。該方法先通過MATLAB設計出一個具有具體指標的FIR濾波器, 再對濾波器係數進行處理, 使之便於在FPGA中實現, 然後採用基於分布式算法和CSD編碼的濾波器結構進行設計, 從而避免了乘法運算, 節約了硬體資源,其流水線的設計方式也提高了運行速度。Matlab和Modelsim仿真表明, 該設計功能正確, 能實現快速濾波。
  • 基於FPGA的結構光圖像中心線提取
    編者按:在線結構光視覺三維測量系統中,為了實現對結構光圖像線條紋中心的實時高精度提取,本文採用了極值法、閾值法和灰度重心法相結合的中心線提取方法。利用現場可編程門陣列器件(FPGA)的流水線技術以及並行技術的硬體設計來完成運算,保證了光條紋中心點的實時準確提取。