使用運算放大器的輸入和輸出電壓考慮因素

2020-12-05 電子發燒友

使用運算放大器的輸入和輸出電壓考慮因素

博客園 發表於 2019-10-03 16:45:00

運放採用雙電源供電,輸出緊跟輸入的變化。在輸入端加入一個幅值為±1.5V的三角波,發現輸出有削波現象,問題原因是什麼?

為弄清此問題,需要了解共模輸入電壓(輸入電壓擺幅)和輸出電壓擺幅 。

1.共模輸入電壓

定義了正常輸入時,所需的共模電壓範圍,共模輸入電壓通常與運放的供電電源有關。如果超過這個範圍,輸出信號就會工作在非線性,引起失真;

2.輸出電壓擺幅

與運放供電電源有關。同樣,如果超過這個範圍,同樣使得輸出信號產生失真。

如下圖所示:

注意:我們平常說的軌對軌運算放大器,共模輸入電壓可以達到供電電源範圍,達到供電電源的兩個軌,輸出電壓接近電源軌。

首先對於上圖的共模輸入電壓為0V,工作在其範圍,但是輸出也是0V,不在輸出電壓擺幅範圍內,所以引起了輸出電壓可能達到200mV,引起了較大誤差。

由上圖可以分析出,輸入電壓不在共模輸入電壓範圍內,所以可能會導致輸出電壓不在μV級別,可能回答道mV級別。

再回到起初問題,關於輸入是±1.5V的三角波,輸出卻出現削波現象,其原因在於輸入幅值不在共模輸入電壓範圍。當三角波幅值達到1.5V時,已經超過共模輸入電壓的最大值1V,所以會產生削波現象;

總結:對於使用運放時,需要考慮輸入電壓是否在共模輸入電壓範圍,同時還要考慮輸出電壓擺幅問題。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 運算放大器輸入與輸出電壓範圍
    輸入與輸出電壓範圍 關於實際運算放大器的容許輸入和輸出電壓範圍,有一些實際的基本問題需要考慮。顯然,這不僅會根據具體器件而變化,還會根據電源電壓而變化。我們可以通過器件選型來優化該性能點,首先要考慮較為基礎的問題。 任何實際運算放大器輸入和輸出端的工作電壓範圍都是有限的。現代系統設計中,電源電壓在不斷下降,對運算放大器之類的模擬電路而言,3 V至5 V的總電源電壓現在已十分常見。這一數值和過去的電源系統電壓相差甚遠,當時通常為±15 V(共30 V)。
  • 運算放大器電壓範圍――輸入和輸出之解疑釋惑
    只要電源輸入和輸出電壓在其工作範圍以內,就不會出問題。下面是我們需要考慮的三個重要電壓範圍:1、總電源電壓範圍。它是兩個電源端之間的總電壓。例如,30V 的總電壓範圍為±15V。再如,某個運算放大器的工作電壓範圍可能為 6V 到 36V。在低壓極端條件下,它可能為 ±3V 或者 +6V 。
  • 使用合適的高電壓運算放大器安全、高效地控制和放大高電壓
    在很多應用中,由於輸入信號性質或輸出負載特徵的要求,需要運算放大器在高電壓範圍內(60 V 至 100 V 以上)工作。這些應用包括噴墨印表機和 3D 印表機中的壓電驅動器、超聲波變送器及其他醫療器械、ATE 驅動器和電場源。
  • 運算放大器輸出相位反轉和輸入過壓保護分析
    超過輸入共模電壓(CM)範圍時,某些運算放大器會發生輸出電壓相位反轉問題。其原因通常是運算放大器的一個內部級不再具有足夠的偏置電壓而關閉,導致輸出電壓擺動到相反電源軌,直到輸入重新回到共模範圍內為止。圖1所示為電壓跟隨器的輸出相位反轉情況。
  • 如何高效選擇和使用精密運算放大器
    本文將介紹各種精密運算放大器的作用和細微差別及其設計考慮因素,然後,以 Analog Devices 的解決方案為例,運用這些設計考慮因素來說明如何選擇並有效應用精密運算放大器。 精密運算放大器的作用 設計人員之所以傾向於使用具有較低精度運算放大器的大規模 IC,主要是因為只需「校準」運算放大器的缺陷,即可確保傳感器通道的性能。
  • 運算放大器的構建模塊和電壓跟隨器逆變器
    我們已經看到我們可以將電阻連接到基本運算放大器產生各種反相和非反相輸出和配置及其各自的增益。 為了使所有事情變得更容易,這裡列出了一些「基本運算放大器構建」塊「我們可以用來創建不同的電子電路和濾波器。 電壓跟隨器 電壓跟隨器,也稱為緩衝劑不會放大或反轉輸入信號,而是提供隔離兩個電路之間。
  • 運算放大器驅動容性負載要考慮的穩定因素
    運算放大器驅動容性負載的能力受到以下幾個因素的影響: 放大器的內部架構(例如,輸出阻抗,增益和相位裕度,內部補償電路) 負載阻抗的性質 反饋電路的衰減和相移,包括輸出的影響負載,輸入阻抗和雜散電容。
  • 測試運算放大器的輸入偏置電流
    在本系列第 1 部分《電路測試主要運算放大器參數》一文中,我們介紹了一些基本運算放大器測試,例如失調電壓 (VOS)、共模抑制比 (CMRR)、電源抑制比 (PSSR) 和放大器開環增益 (Aol)。本文我們將探討輸入偏置電流的兩種測試方法。選擇哪種方法要取決於偏置電流的量級。
  • 運算放大器的分類與運算放大器在使用中的注意事項
    實際運算放大器的增益是有限值,而且隨頻率的升高而降低;其輸入阻抗不是無窮大,輸出阻抗也不等於零。   根據運算放大器的技術指標可以對其進行分類,主要有通用、高速、寬帶、高精度、高輸入電阻和低功耗等幾種。   1. 通用型   通用型運算放大器的技術指標比較適中,價格低廉。通用型運放也經過了幾代的演變,早期的通用Ⅰ型運放已很少使用了。
  • 跨阻放大器中的噪聲參數及因素考慮
    跨阻放大器中的噪聲參數及因素考慮 電子設計 發表於 2019-04-15 07:36:00 LTC6268和LTC6269是單/雙500MHz FET輸入運算放大器
  • 什麼是運算放大器?
    然而,運算放大器只能改變一個條件來使輸入電壓相等,即輸出電壓。因此,運算放大器的輸出通常以某種方式連接到輸入,這種通常被稱為電壓反饋。7NCednc在本文中,我將解釋一個通用電壓反饋運算放大器的基本操作,並請您參閱其他內容以了解更多信息。7NCednc圖1描述了運算放大器的標準示意圖符號。
  • 運算放大器的偏置電壓設置技巧分享
    張世龍指出,對於微弱信號的放大,只用單個放大器難以達到好的效果,必須使用一些較特別的方法和傳感器激勵手段,而使用同步檢測電路結構可以得到非常好的測量效果。這種同步檢測電路類似於鎖相放大器結構,包括傳感器的方波激勵,電流轉電壓放大器,和同步解調三部分。他表示,需要注意的是電流轉電壓放大器需選用輸入偏置電流極低的運放。另外同步解調需選用雙路的SPDT模擬開關。
  • 儀表放大器和運算放大器優缺點對比
    什麼是儀表放大器   這是一個特殊的差動放大器,具有超高輸入阻抗,極其良好的CMRR,低輸入偏移,低輸出阻抗,能放大那些在共模電壓下的信號。   隨著電子技術的飛速發展,運算放大電路也得到廣泛的應用。儀表放大器是一種精密差分電壓放大器,它源於運算放大器,且優於運算放大器。
  • 運算放大器TS321和電壓比較器TS391的工作原理及應
    文中主要介紹這兩款器件的工作原理和一些基本應用。它們的功耗低,體積小,能延長電池的使用時間,節省電路板面積,降低產品成本。關鍵詞:超小型;運算放大器;電壓比較器;TS321;TS391 從1963年Robert J.
  • 運算放大器的作用(運算放大器的實際應用)
    運算放大器(簡稱「運放」)是具有很高放大倍數的電路單元。在實際電路中,通常結合反饋網絡共同組成某種功能模塊。它是一種帶有特殊耦合電路及反饋的放大器。其輸出信號可以是輸入信號加、減或微分、積分等數學運算的結果。由於早期應用於模擬計算機中,用以實現數學運算,故得名「運算放大器」。
  • 運算放大器和電壓比較器的原理符號一樣,該怎麼區分?
    運算放大器和電壓比較器在原理符號上確實是一樣的,都有5個引腳,其中兩個引腳為電源+和電源-,還有兩個引腳為同相輸入端(+)和反向輸入端(-),最後一個引腳是輸出端。但是它們的功能是不一樣的,運放的功能及用途更複雜,而比較器就相對簡單得多。
  • 運算放大器的簡單介紹和運用
    運算放大器是一種可以進行數學運算的放大電路。運算放大器不僅可以通過增大或減小模擬輸入信號來實 現放大,還可以進行加減法以及微積分等運算。所以,運算放大器是一種用途廣泛,又便於使用的集成電路。圖1:運算放大器的電路符號如圖1所示,運算放大器的電路符號有正相輸入端Vin(+)和反相輸入端Vin(-)兩個輸入引腳,以及一個輸出引腳Vout。實際上運算放大器還有電源引腳(+電源、-電源)和偏移輸入引腳等,在電路符號上沒有表示出來。
  • 高速電流反饋運算放大器
    眾所周知,在雙極型電晶體電路中,在所有其他條件相同的情況下,電流的切換速度快於電壓。這構成了非飽和發射極耦合邏輯(ECL)和電流輸出DAC等器件的基礎。在電流開關節點維持低阻抗有助於降低雜散電容的影響,這是高速運行狀態下最大的危害因素之一。電流鏡很好地展示了如何在最少量的延遲下實現電流開關。
  • 運算放大器多諧振蕩器的比較和轉換案例
    運算放大器多諧振蕩器是一種非反相運算放大器電路,可藉助RC反饋網絡產生自己的輸入信號 運算放大器或Op-amp是一種非常通用的設備,可用於各種不同的電子電路和應用,從電壓放大器到濾波器,再到信號調節器。但是,基於任何通用運算放大器的一個非常簡單且非常有用的運算放大器電路是Astable運算放大器多諧振蕩器。
  • 一種直接測量運算放大器輸入差分電容的方法
    輸入電容可能會成為高阻抗和高頻運算放大器(op amp)應用的一個主要規格。值得注意的是,當光電二極體的結電容較小時,運算放大器的輸入電容會成為噪聲和帶寬問題的主導因素。運算放大器的輸入電容和反饋電阻在放大器的響應中產生一個極點,從而影響穩定性並增加較高頻率下的噪聲增益。