Zihuai He博士領導的課題組史丹福大學正在招募博士後學者,他們在統計學、生物統計學、計算機科學、生物信息學或與之密切相關的領域接受過培訓。申請者來自雄心勃勃、獨立、積極進取、有強烈出版記錄的候選人。
何博士的團隊開發了統計和計算方法,通過對多種基因的分析,識別和解釋導致或有助於阿爾茨海默病(AD)和阿爾茨海默病相關痴呆症(ADRD)的風險或預防的功能基因突變/變體,基因組和生物標記數據,目前可用於研究社區。
職責和責任
博士後學者們將致力於三個核心研究課題:1)開發新的統計方法來分析和提取大規模/生物庫規模的遺傳數據中的信息;2)開發可擴展和可解釋的人工智慧方法,從而識別與AD發病機制有關的功能基因突變/變體。3) 開發管道以應用這些方法分析大型異構數據集。他們也將被鼓勵發展和追求自己的調查路線。
任職資格
•在任職前完成(或接近完成)統計學、生物統計學、計算機科學、生物信息學或密切相關領域的博士學位。
•較強的編程技能(R、Python等)。
•優秀的書面和口頭溝通能力。
•有統計遺傳學、機器學習或深度學習經驗者優先。
申請說明
請將申請電郵至何子懷博士。遞交申請後,會立即覆核。
1.說明你有興趣申請實驗室的求職信。
2.簡歷。
3.三位專業推薦人的聯繫方式。
4。您最近或相關的出版物。
聯繫人郵箱 ZIHUAI@STANFORD.EDU
我不是中介,只是想把我得到的內部公布的消息提供給我國青年人。不同於網上中介公司的,根據內容多少,分別放在頭條和微頭條。有需要者可關注我,以便查看最近的有關內容。
The research group led by Dr. Zihuai He (https://profiles.stanford.edu/zihuai-he) at Stanford University is recruiting postdoctoral scholars with prior training in statistics, biostatistics, computer science, bioinformatics or a closely related area. Applications are invited from ambitious, independent and motivated candidates with a strong publication record.Dr. He’s group develops statistical and computational methodologies for the identification and interpretation of functional gene mutations/variants that cause or contribute to the risk of or protection against the development of Alzheimer’s disease (AD) and Alzheimer's disease related dementias (ADRD) via analysis of a variety of genetic, genomic, and biomarker data that are currently available to the research community.
Duties and Responsibilities
The postdoctoral scholars will be working on three core research topics: 1) develop novel statistical methods for analyzing and extracting information from large/biobank scale genetic data; 2) develop scalable and interpretable AI methods that lead to the identification of functional gene mutations/variants involved in AD pathogenesis. 3) develop pipeline to apply such methods to analyze large heterogeneous datasets. They will also be encouraged to develop and pursue their own lines of inquiry.
Position Qualifications
• Completed (or nearly completed) a PhD in Statistics, Biostatistics, Computer Science, Bioinformatics, or a closely related area prior to their appointment.
• Strong programming skills (R, Python, etc.).
• Excellent written and oral communication skills.
• Experience in statistical genetics, machine learning or deep learning is preferred.