T. J. Sargent的數學建議

2021-01-14 生態環境公共經濟與政策

在經濟學界中,經常會爭論是否需要數學,大部分學者還是認為數學對經濟學很重要。我本科數學出身,專業「數學與應用數學(金融數學方向)」,因此,除了四年的數學專業課程學習,其實從大二的某天晚上開始,就有副校長(彭育元教授,我的經濟學啟蒙老師,在我心裡也是很厲害的教授)教我們西方經濟學——經濟學原理(曼昆),其實學的是高鴻業的《西方經濟學》。那時候開始,就覺得經濟學十分有趣,後來陸續學習計量、金融、保險、動態經濟學方法等,發現經濟學其實還是很難的,我指的是數學方面!直到今天,越發覺得當初學的很多數學課程非常有用,例如,數學分析、高代、統計、常微分、隨機過程、數值分析等。現在又重新去學。所以我也認為數學對於學習經濟學很有幫助,雖然我是小嘍囉,哈哈!那麼,我就給大家介紹一位大師級經濟學家的數學建議——T. J. Sargent的數學建議。


Sargent指出,下列的這些建議是根據一些學生的成功經驗總結出來的。Sargent說:

數學是經濟學的語言。而數學應該從基本的數學知識開始:微積分(包括多元積分)、線性代數、概率論與統計。

此外,尤其推薦下列課程:(1)Markov chains and stochastic processes(馬爾科夫鏈和隨機過程); (2) differential equations(微分方程)。


在NYU,許多偉大的經濟學家(e.g., Robert Engle, Xavier Gabaix, Stanley Zin, Jess Benhabib, Douglas Gale, Boyan Jovanovic, David Pearce, Debraj Ray,  Ennio Stacchetti, Charles Wilson, and others)對經濟學做出了巨大的貢獻,這不僅僅因為他們極具創造力,還因為他們比別人學習了更多的數學。


我的個人建議是,如果你是經濟學本科生,如果你對經濟學感興趣,那麼,你應該去多學一到兩門數學與統計課程,這樣你會變得更好。(此處有刪減,但並沒有影響Sargent原意)如果你計劃申請研究生,那麼有一些數學與統計課程在你的成績單上,也會給你加分。


下面列出NYU和Stanford學生的數學課程List。這些課程對於應用計量經濟學、宏觀經濟理論和產業組織理論等都非常有幫助。這些課程也提供了用於設定和估計動態競爭模型的方法論基礎。


正如慢跑一樣,我的建議是不要過度。因此,要找到一個能堅持幾年的速率。這樣下來,你會發現,其實學習這些數學花不了多少時間。

當然,還有另外一些課程也很重要,很有用。而最重要的是,開始學習這些工具,並習慣這些課程的表達方式。


NYU學生的數學課程

V63.0121 Calculus I
Derivatives, antiderivatives, and integrals of functions of one real variable. Trigonometric, inverse trigonometric, logarithmic and exponential functions. Applications, including graphing, maximizing and minimizing functions. Areas and volumes.

V63.0122 Calculus II
Techniques of integration. Further applications. Plane analytic geometry. Polar coordinates and parametric equations. Infinite series, including power series.

V63.0123 Calculus III
Functions of several variables. Vectors in the plane and space. Partial derivatives with applications, especially Lagrange multipliers. Double and triple integrals. Spherical and cylindrical coordinates. Surface and line integrals. Divergence, gradient, and curl. Theorem of Gauss and Stokes.

V63.0140 Linear Algebra
Systems of linear equations, Gaussian elimination, matrices, determinants, Cramer's rule. Vectors, vector spaces, basis and dimension, linear transformations. Eigenvalues, eigenvectors, and quadratic forms.

If you want to go to graduate school, it is essential that you take a course in real analysis. After that, courses in probability theory, Markov chains, and differential equations, probably in that order will be very useful.

V63.0141 Honors Linear Algebra I - identical to G63.2110
Linear spaces, subspaces, and quotient spaces; linear dependence and independence; basis and dimensions. Linear transformation and matrices; dual spaces and transposition. Solving linear equations. Determinants. Quadratic forms and their relation to local extrema of multivariable functions.

V63.0142 Honors Linear Algebra II - identical to G63.2120

V63.0233 Theory of Probability
An introduction to the mathematical treatment of random phenomena occurring in the natural, physical, and social sciences. Axioms of mathematical probability, combinatorial analysis, binomial distribution, Poisson and normal approximation, random variables and probability distributions, generating functions, Markov chains applications.

V63.0234 Mathematical Statistics
An introduction to the mathematical foundations and techniques of modern statistical analysis for the interpretation of data in the quantitative sciences. Mathematical theory of sampling; normal populations and distributions; chi-square, t, and F distributions; hypothesis testing; estimation; confidence intervals; sequential analysis; correlation, regression; analysis of variance. Applications to the sciences.

V63.0250 Mathematics of Finance
Introduction to the mathematics of finance. Topics include: Linear programming with application pricing and quadratic. Interest rates and present value. Basic probability: random walks, central limit theorem, Brownian motion, lognormal model of stock prices. Black-Scholes theory of options. Dynamic programming with application to portfolio optimization.

V63.0252 Numerical Analysis
In numerical analysis one explores how mathematical problems can be analyzed and solved with a computer. As such, numerical analysis has very broad applications in mathematics, physics, engineering, finance, and the life sciences. This course gives an introduction to this subject for mathematics majors. Theory and practical examples using Matlab will be combined to study a range of topics ranging from simple root-finding procedures to differential equations and the finite element method.

V63.0262 Ordinary Differential Equations
First and second order equations. Series solutions. Laplace transforms. Introduction to partial differential equations and Fourier series.

V63.0263 Partial Differential Equations
Many laws of physics are formulated as partial differential equations. This course discusses the simplest examples, such as waves, diffusion, gravity, and static electricity. Non-linear conservation laws and the theory of shock waves are discussed. Further applications to physics, chemistry, biology, and population dynamics.

V63.0282 Functions of a Complex Variable
Complex numbers and complex functions. Differentiation and the Cauchy-Riemann equations. Cauchy's theorem and the Cauchy integral formula. Singularities, residues, and Laurent series. Fractional Linear transformations and conformal mapping. Analytic continuation. Applications to fluid flow etc.

V63.0325 Analysis I
The real number system. Convergence of sequences and series. Rigorous study of functions of one real variable: continuity, connectedness, compactness, metric spaces, power series, uniform convergence and continuity.

V63.0326 Analysis II
Functions of several variables. Limits and continuity. Partial derivatives. The implicit function theorem. Transformation of multiple integrals. The Riemann integral and its extensions.

 V63.0375 Topology (optional)
Set-theoretic preliminaries. Metric spaces, topological spaces, compactness, connectedness, covering spaces, and homotopy groups.

G63.1410.001, 1420.001 INTRODUCTION TO MATHEMATICAL ANALYSIS I, II
Fall term
Functions of one variable: rigorous treatment of limits and continuity. Derivatives. Riemann integral. Taylor series. Convergence of infinite series and integrals. Absolute and uniform convergence. Infinite series of functions. Fourier series.
Spring term
Functions of several variables and their derivatives. Topology of Euclidean spaces. The implicit function theorem, optimization and Lagrange multipliers. Line integrals, multiple integrals, theorems of Gauss, Stokes, and Green.

G63.2450.001, 2460.001 COMPLEX VARIABLES I, II
Fall Term
Complex numbers; analytic functions, Cauchy-Riemann equations; linear fractional transformations; construction and geometry of the elementary functions; Green's theorem, Cauchy's theorem; Jordan curve theorem, Cauchy's formula; Taylor's theorem, Laurent expansion; analytic continuation; isolated singularities, Liouville's theorem; Abel's convergence theorem and the Poisson integral formula.
Text: Introduction to Complex Variables and Applications, Brown & Churchill
Spring Term
The fundamental theorem of algebra, the argument principle; calculus of residues, Fourier transform; the Gamma and Zeta functions, product expansions; Schwarz principle of reflection and Schwarz-Christoffel transformation; elliptic functions, Riemann surfaces; conformal mapping and univalent functions; maximum principle and Schwarz's lemma; the Riemann mapping theorem.}
Text: Complex Analysis, Alfors

G63.2470.001 ORDINARY DIFFERENTIAL EQUATIONS
Existence theorem: finite differences; power series. Uniqueness. Linear systems: stability, resonance. Linearized systems: behavior in the neighborhood of fixed points. Linear systems with periodic coefficients. Linear analytic equations in the complex domain: Bessel and hypergeometric equations.
Recommended text: Ordinary Differential Equations, Coddington & Levinson

G63.2490.001 PARTIAL DIFFERENTIAL EQUATIONS (one-term format)
Basic constant-coefficient linear examples: Laplace's equation, the heat equation, and the wave equation, analyzed from many viewpoints including solution formulas, maximum principles, and energy inequalities. Key nonlinear examples such as scalar conservation laws, Hamilton-Jacobi equations, and semilinear elliptic equations, analyzed using appropriate tools including the method of characteristics, variational principles, and viscosity solutions. Simple numerical schemes: finite differences and finite elements. Important PDE from mathematical physics, including the Euler and Navier-Stokes equations for incompressible flow.
Suggested texts: Partial Differential Equations, Paul R. Garabedian, AMS; Partial Differential Equations, L. C. Evans, AMS; Partial Differential Equations, Fritz John, Springer

G63.2550.001 FUNCTIONAL ANALYSIS
The course will concentrate on concrete aspects of the subject and on the spaces most commonly used in practice and their duals. Working knowledge of Lebesgue measure and integral is expected. Special attention to Hilbert space (L2, Hardy spaces, Sobolev spaces, etc.), to the general spectral theorem there, and to its application to ordinary and partial differential equations. Fourier series and integrals in that setting. Compact operators and Fredholm determinants with an application or two. Introduction to measure/volume in infinite-dimensional spaces (Brownian motion). Some indications about non-linear analysis in an infinite-dimensional setting. General theme: How does ordinary linear algebra and calculus extend to infinite dimensions?
Mandatory text: Functional Analysis, P. Lax, (Pure & Applied Mathematics, New York), Wiley-Interscience, John Wiley & Sons, 2002
Rec. text: Methods of Modern Mathematical physics Vol. I: Functional Analysis, M. Reed & B. Simon, Academic Press, New York-London, 1972

G63.2012.002 ADVANCED TOPICS IN NUMERICAL ANALYSIS (Numerical Methods with Probability)
A continuation of Numerical Methods I, introducing statistical and scientific applications of numerical linear algebra (including randomized algorithms), digital signal processing (including stochastic processes), spectral and adaptive schemes for numerical integration, Monte-Carlo techniques (including Metropolis and Hastings), the enhancement of accuracy via postprocessing, and other fundamentals. The focus is on basic methods for solving problems encountered frequently in modern science and technology.
Cross-listed as G22.2945.002

G63.2902.001 STOCHASTIC CALCULUS
Review of basic probability and useful tools. Bernoulli trials and random walk. Law of large numbers and central limit theorem. Conditional expectation and martingales. Brownian motion and its simplest properties. Diffusion in general: forward and backward Kolmogorov equations, stochastic differential equations and the Ito calculus. Feynman-Kac and Cameron-Martin Formulas. Applications as time permits.
Text: Stochastic Calculus, A Practical Introduction, Richard Durrett, CRC Press, Probability & Stochastics Series

G63.2911.001, 2912.001 PROBABILITY: LIMIT THEOREMS I, II
 Newman, (fall);  H. McKean (spring).
Fall term
Probability, independence, laws of large numbers, limit theorems including the central limit theorem. Markov chains (discrete time). Martingales, Doob inequality, and martingale convergence theorems. Ergodic theorem.
Spring term
Independent increment processes, including Poisson processes and Brownian motion. Markov chains (continuous time). Stochastic differential equations and diffusions, Markov processes, semigroups,
generators and connection with partial differential equations.
Spring text: Stochastic Processes, S. R. S. Varadhan, CIMS - AMS, 2007

G63.2931.001 ADVANCED TOPICS IN PROBABILITY (Markov Processes and Diffusions).
In the first part of the course, we will give an introduction to the general theory of Markov processes for both discrete and continuous time. Our main focus will be the study of their long-time behavior (transience, recurrence, ergodicity, mixing) in the classical context of Harris chains, but also for a larger class of processes that doesn't fit into this context. The second part of the course will be aimed at applying the abstract results from the first part to the more concrete framework of elliptic diffusion processes. Lyapunov function techniques will play a prominent role in this part of the course. The final part of the course will be an introduction to the theory of hypoelliptic diffusion processes. We will give a short introduction to Mallivain calculus and use it to give a probabilistic proof of Hormander's famous "sums of squares" theorem.
Recommended texts: Markov Chains and Stochastic Stability, Meyn and Tweedie ; Introduction to the Theory of Diffusion Processes, Krylov; The Malliavin Calculus and Related Topics, Nualart

G63.2932.001 ADVANCED TOPICS IN PROBABILITY (Large Deviations and Applications)
Varadhan
Prerequisites: Probability: Limit Theorems I and II; familiarity with some Markov Processes, Brownian motion, SDE, diffusions.
Standard Cramer Theory for sums of iid random variables, Ventcel Freidlin theory for ordinary differential equations with small noise and the exit problem. Donsker-Varadhan theory of large time behavior of Markov Processes. Applications to interacting particle systems.
Recommended Texts on Large Deviations: Dembo & Zeitouni, Deuschel & Stroock, Weiss & Schwartz

G63.2044 Monte Carlo Methods and Simulation of Physical Systems
Principles of Monte Carlo: sampling methods and statistics, importance sampling and variance reduction, Markov chains and the Metropolis algorithm. Advanced topics such as acceleration strategies, data analysis, and quantum Monte Carlo and the fermion problem.

G63.2830, 2840 Advanced Topics in Applied Mathematics
Recent topics: mathematical models of crystal growth; math adventures in data mining; ice dynamics; vortex dynamics; applied stochastic analysis; developments in statistical learning; fluctuation dissipation theorems and climate change; theory and modeling of rare events.


Math courses for Stanford students

Distinguished Stanford graduates such as David Kreps and Darrell Duffie contributed important new ideas in economics from the beginning of their careers partly because they are creative and partly because they were extraordinarily well equipped in mathematical and statistical tools.

Math Department

Math 103, 104, Linear algebra

Math 113, 114 Linear algebra and matrix theory

Math 106, Introduction to functions of a complex variable (especially useful for econometrics and time series analysis)

Math 124, Introduction to stochastic processes

Math 130, Ordinary differential equations

Math 103, 104, Linear algebra

Math 131, Partial differential equations

Math 175, Functional analysis

Math 205A, B, C, Real analysis and functional analysis

Math 230A, B, C, Theory of Probability

Math 236, Introduction to stochastic differential equations

Engineering Economic Systems and Operations Research

EESOR 313, Vector Space Optimization. This course is taught from `the Bible' by the author (Luenberger). The book is wonderful and widely cited by economists

EESOR 322, Stochastic calculus and control

Statistics

Stat 215-217, Stochastic processes (Cover)

Stat 218, Modern Markov chains (Diaconis)

Stat 310 A, B, Theory of probability (Dembo)



相關焦點

  • Latex數學公式教程
    筆者撰寫本文的目的在於簡單總結LaTex數學公式的語法,本文面向那些想用Markdown做數學筆記的初學者。因此本文不涉及與數學公式不相關的LaTex內容。概述LaTex使用一種特有的模式來排版數學符號和公式。
  • 為何敲代碼,學好數學很重要?
    用數學思考數千年來,被高效地用於計算方面思考的自然語言就是數學。大多數人並不認為數學是自由的或靈活的。他們在學校看到可怕的符號和對解題步驟生硬記憶的經歷與自由和靈活的數學精神恰恰相反。我希望本文的讀者在數學方面有更好的經歷,比如在離散數學或線性代數課程中; 那種涉及構建清晰的定義和演繹,並用符號寫成散文(推理步驟)的經歷(大多數符號甚至直到16世紀才被發明)。
  • J immunol:RORγt泛素化抑制Th17活性
    doi: 10.4049/jimmunol.1600548PMC:PMID:Ubiquitination of RORγt at Lysine 446 Limits Th17 Differentiation by Controlling
  • 線性回歸中+t值的含義_線性回歸 y截距p值的計算 - CSDN
    這種模型,由於它是參數的線性函數,所以其數學分析相對較為簡單,同時可以是輸入變量的非線性函數。p(t但同時,線性模型在數學分析上相對較為簡單,進而成為了很多其他的複雜算法的基礎。一般線性回歸對於一個一般的線性模型而言,其目標就是要建立輸入變量和輸出變量之間的回歸模型。該模型是既是參數的線性組合,同時也是輸入變量的線性組合。
  • matlab t檢驗_matlab t檢驗p值 - CSDN
    1:n1 SX1(i,j)=sum(X1(10*i-9:10*i,j)); SX2(i,j)=sum(X2(10*i-9:10*i,j)); endend% 計算每組樣品得分的均值for i=1:K1 Mean1(i)=mean(SX1(i,:)); Mean2(i)=mean(SX2(i,:));end% 計算檢驗值for i=1:K1 S1(1,i
  • matlab t檢驗值_matlab t檢驗p值 - CSDN
    1:n1 SX1(i,j)=sum(X1(10*i-9:10*i,j)); SX2(i,j)=sum(X2(10*i-9:10*i,j)); endend% 計算每組樣品得分的均值for i=1:K1 Mean1(i)=mean(SX1(i,:)); Mean2(i)=mean(SX2(i,:));end% 計算檢驗值for i=1:K1 S1(1,i
  • Sargent數量經濟學(15-1):線性代數(1)
    許文立,安徽大學,xuweny87@163.com許坤,中國人民大學,kunxu2014@126.com第二部分  工具與技術 線性代數概述線性代數是經濟學需要學習的、最有用的應用數學分支之一在後一種情況下,矩陣必須具有相同的行列,才能使運算有意義矩陣乘法的規則是上述討論的內積的推廣,旨在使乘法與基本的線性運算相適應如果A和B是兩個矩陣,則它們的乘積AB是A的第i行和B的第j列的內積組成的第
  • 淺談實測測量電路和示波器獲得波形的數學表達式
    但在實際中,我們觀測到的信號往往是在示波器上的波形,此時該如何獲得這些波形的數學表達式? 如果這些參數知道了,便可以寫出對應的信號數學表達式了。在這種情況下,從觀測到的帶有噪聲的信號波形中回復處信號,則屬於信號參數估計的內容了。
  • t檢驗 機器學習_機器學習 t 檢驗 - CSDN
    假設檢驗常見的假設檢驗有:T檢驗(Student’s t Test),F檢驗(方差齊性檢驗),卡方驗證等。個類別的第 i 個樣本,$ \bar{x_j}$表示第 j個類別的樣本均值,即 xjˉ=∑
  • 數學公式太晦澀,不如用代碼寫出來:這是程式設計師學數學的獨特方式
    你對核心數學機制的理解越深入,你就越可能靈光閃現,成為一種新方法的創造者。事實上,這看起來就像是古代的數學領袖選擇了看起來最有意思的符號來描述相當直觀的方法。這就導致了一個結果:等式和變量看起來比實際表達的含義還要複雜得多。 我發現代碼不僅能用來寫程序,而且還是用於解釋複雜問題的全球通用語言。當我學習數據科學背後的數學時,我總是發現理解數學的最佳方式是寫出描述這些等式的代碼段。最終,我理解了這些符號,現在讀它們就像讀一篇普通論文一樣。
  • 檢驗哈勃定律正確性研究項目建議書
    代入上式則有:      H總=H多+H宇+H介=u/(C-u)+js/(1+j)+ks        (公式1-1)1.4、利用對已知距離相等但相對速度不同和已知視速度相等但距離不同的天體進行紅移量的實測,分別獲得其紅移總量。再利用數學運算計算出都卜勒紅移分量、宇宙學紅移分量和介質紅移分量。
  • (建議收藏)
    史上最全水果英文名稱匯總及配圖,建議收藏了慢慢看。
  • 一文帶你了解被 BATJ 問爛的 TopK 問題
    Kth Largest Element in an Arrayhttps://leetcode.com/problems/kth-largest-element-in-an-array/description/快速選擇快速排序的 partition() 方法,會返回一個整數 j 使得 a[l..j-1] 小於等於 a[j],且 a[j+1
  • 基於TensorFlow理解三大降維技術:PCA、t-SNE 和自編碼器
    我知道,這聽起來很唬人,但我們不會深入到數學證明中去,僅保留有助於我們理解這種方法的優缺點的部分。所以 Eigen 分解和 SVD 都是分解矩陣的方式,讓我們看看它們可以在 PCA 中提供怎樣的幫助,以及它們有怎樣的聯繫。先看看下面的流程圖,我會在後面解釋。
  • 初中數學公式(建議收藏)
    初中數學公式,同學們可以收藏一下。因為各地用的教材不一樣,學的內容也不完全一樣,有些高中才學的知識,有些地方初中就學了,而在長沙,想要考高分,我也是建議同學們觸及一些高中的知識點,比如:兩點間的距離公式,兩角和差公式,數列求和公式……有些題目,直接運用公式就可以解決的,但同學們如果記不住公式,就會走很多彎路。
  • 手推公式:LSTM單元梯度的詳細的數學推導
    本文的主要思想是解釋其背後的數學原理,所以閱讀本文之前,建議首先對LSTM有一些了解。介紹上面是單個LSTM單元的圖表。我知道它看起來可怕,但我們會通過一個接一個的文章,希望它會很清楚。解釋基本上一個LSTM單元有4個不同的組件。
  • 小學數學最全單位換算集合,在線數學教育平臺建議收藏
    在小學數學中,有很多單位換算,這些都是最基本的知識,為了幫助學生能全面了解單位換算的知識,國內優質在線數學教育平臺麥斯數學幫助學生整理了單位換算的相關知識,希望能幫助孩子鞏固基礎,提升學習成績。質量換算;常用的質量單位:噸(t);千克(kg);克(g)質量單位之間的換算:1噸=1000千克;1千克=1000克。時間換算;常用的時間單位:世紀;年;月;日;時;分;秒。
  • Triplet loss
    什麼是Triplet Loss?
  • 激發孩子數學興趣,這16部記錄片和6部電影一定要收藏!
    暑假來了,悠悠老師為大家推薦16部數學紀錄片和6部數學電影。這些記錄片和電影,從數學的歷史發展,埃及人的10進位,美索不達米亞人的60進位,講到古希臘的幾何學,還有一些數學大師的成長故事,娓娓道來,講他們為數學、學術痴迷的故事。
  • 初三數學居家學習建議:把在線學習轉化為最美麗的數學符號
    同學們可以結合自己在線學習的實際條件和自己的數學基礎,特別是居家學習時的自我控制能力等,制訂好自己的數學複習計劃。在制定計劃時,建議大家主動與你的任課教師進行聯繫溝通,請他們幫你提供一些意見建議。二、五官齊上陣,提升學習效率居家學習過程中,教育部門、學校和老師都為我們精心準備了在線學習課程。