【Seminar】Entropy in Invariant Subspace

2021-02-20 中國工程物理研究院研究生院

Entropy in Invariant Subspace

報告人: Dr. Youning Li,Tsinghua University

邀請人: 李穎 研究員

報告時間: 2018年9月26日(星期三),  10:00~11:00

報告地點: 中物院研究生院軟體園校區3層C305,海澱區西北旺東路10號院東區9號樓

摘要: Invariant tensors are states in the SU(2) tensor product representation that are invariant under the SU(2) action. They play an important role in the study of loop quantum gravity, particularly the structure of Spin-Networks, which represents the quantization of geometry. Perfect tensors are highly entangled many-body quantum states with local density matrices maximally mixed. Perfect tensors have been employed to construct the Tensor Network as a Conformal Field Theory (CFT) ground state, which realizes the AdS/CFT correspondence. In terms of quantum error-correcting codes, a perfect tensor is a code with large code distance that is half of the system size. A constant weight subspace is natural immunity to the corresponding collective decoherence error. Therefore, an invariant subspace, in which the weight of all states is 0, is natural immunity to different kinds of collective decoherence error.

In this talk, we are going to show that, the combinatorial properties of the constant weight condition impose strong constraints on the reduced density matrices for any vector in the constant weight subspace, and hence limit the possibility of the entanglement structures. As a result, no perfect tensor exists in invariant subspace, but their entanglement entropy is very close to a perfect tensor. The average deficit in invariant subspace can be even smaller than 1/2, which is the average deficit for the whole Hilbert space.

報告人簡介: Youning Li received his bachelor degree from Tsinghua University in 2007. After that he earned his PhD Degree from Tsinghua University in 2013. Dr.Li’s research focuses on the Representation theory and its application in physics, Exact solvable quantum system and Entanglement in quantum information.

All interested are welcome!

相關焦點

  • 用數學編輯3D模型(三)- Subspace Mesh Deformation
    由於是在變量數很少並且被平滑過的subspace中求解,該方法具有較好的穩定性,且算法收斂更快。Control Mesh由本系列的第一篇我們知道,描述局部細節的能量函數一定要具有對局部旋轉的容忍性(rotation invariance),這裡我們重新推導一種非線性的rotation invariant局部細節描述算子::對原始模型上的一個頂點
  • 推薦 | 一份關於MULTI-SCALE ENTROPY的指南!
    Sample entropy calculated for the four sample noise signals are shown in the figure on the right (r = 0.15, m = 2; matlab code for sample entropy calculation).
  • 什麼是機器學習中的cross entropy
    entropy是用於表示二元分類器的誤差,而cross entropy則用於表示多元分類器的誤差。對於一個用的測試樣本的元分類器,那麼cross entropy的計算公式如下:比如一個三元分類問題,有兩個測試樣本,第一個樣本:預測出來的概率為,實際標籤為,寫成one-hot的形式是;第二個樣本:預測出來概率為
  • NEU Held Liaoning Online Seminar on CUPT 2020
    Jiaotong University (XJTU), Nankai University (NKU), Dalian University of Technology (DUT), Criminal Investigation Police University of China (CIPUC), NEU and other colleges and universities attended the seminar
  • Professional Growth Seminar Newsletter
    To respond to this observation, Carol kicked off the seminar by sharing the story of her son.The final part of the seminar focused on reflection on self-assessment. Each teaching fellow was given a copy of their initial job description to guide a self-evaluation process.
  • TensorFlow四種Cross Entropy算法實現和應用
    ➤TensorFlow的交叉熵函數TensorFlow針對分類問題,實現了四個交叉熵函數,分別是tf.nn.sigmoid_cross_entropy_with_logits、tf.nn.softmax_cross_entropy_with_logits、tf.nn.sparse_softmax_cross_entropy_with_logits
  • Da Vinci Live Surgery Seminar: Masters of Robotic Surgery
    At this seminar, you will be able to watch one colectomy (removal of the bowel), one bariatric surgery (stomach
  • TensorFlow四種Cross Entropy算法的實現和應用
    sigmoid_cross_entropy_with_logits我們先看sigmoid_cross_entropy_with_logits,為什麼呢,因為它的實現和前面的交叉熵算法定義是一樣的,也是TensorFlow最早實現的交叉熵算法。
  • 【Seminar】Black hole information paradox from my point of view
    I will briefly describe some basic concept associated with gravitational physics: such as Hawking radiation, Page curve , AdS/CFT correspondence and holographic entanglement entropy.
  • 教程:通過 Subspace 和 Infura 實現實時前端數據
    function App(props) { const subspace = useSubspace(); const daiContract = subspace.contract(dai); const [txnObserver, setObservable] = useState
  • Japan has found a new Covid variant. Here's how it compares to v
    However, at this time any information about the new variant is limited to its genetic make-up, the NIID said.
  • Northeastern University held online seminar of teaching...
    On April 2, the seminar on experience exchange and arrangement of online teaching of graduate education in Northeastern University was held online.
  • 可視化理解 Binary Cross-Entropy
    介紹如果你正在訓練一個二分類器,很有可能你正在使用的損失函數是二值交叉熵/對數(binary cross-entropy / log)。你是否想過使用此損失函數到底意味著什麼?問題是,鑑於如今庫和框架的易用性,很容易讓人忽略所使用損失函數的真正含義。
  • 谷歌推出開源工具DeepVariant,用深度學習識別基因變異
    最後,附上相關連結:Google Research Blog介紹:https://research.googleblog.com/2017/12/deepvariant-highly-accurate-genomes.html開原始碼:https://github.com/google/deepvariantGoogle
  • OCLSS第28屆Seminar回顧
    作為上海科技大學生命科學與技術學院副院長,劉教授在百忙之中抽出時間與我們親切對談,給OCLSS協會2020年的seminar系列活動畫上一個完美的句號。
  • 熵 ENTROPY • 評論 review
    The concept of entropy provides deep insight into the direction of spontaneous change for many everyday phenomena.
  • 崩壞三視覺小說《逆熵anti-entropy》——瓦爾特和愛茵博士的故事
    大家好呀( )‥我是話很多的鹹魚醬~前兩天剛看完崩壞三的視覺小說《逆熵anti-entropy》看完後,我除了吹爆逆熵的元老之外,還想錘爆奧託大人的頭!!
  • 全球熵ETV 什麼是熵 解析entropy熵的概況 如何理解熵原理與熵增定律
    19世紀 中期德國的著名物理學家和數學家克勞修斯在全世界第一個真正提出entropy熵的概念,克勞修斯是全球公認的熱力學理論奠基人,分子運動理論奠基者。熵是表徵物質狀態的參量之一,物理意義指複雜,無或者混亂的度量。2 如何理解熵原理與熵增定律?
  • AAAI 2019 |把Cross Entropy梯度分布拉「平」,就能輕鬆超越Focal...
    直接把 cross entropy 產生的 gradient distribution 標準化到 uniform 就可以輕鬆訓練單階段物體檢測模型。該論文已經被 AAAI 2019 會議接受為 Oral 論文,基於 PyTorch+MMDet 的代碼已經放出。