Visual inspection of histopathology slides is one of the main methods used by pathologists to assess the stage, type and subtype of lung tumors.
組織病理學載玻片的目視檢查是病理學家用於評估肺腫瘤的階段,類型和亞型的主要方法之一。
Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most prevalent subtypes of lung cancer, and their distinction requires visual inspection by an experienced pathologist.
腺癌(LUAD)和鱗狀細胞癌(LUSC)是最常見的肺癌亞型,它們的需要經驗豐富的病理學家進行目視檢查來區分。
In this study, we trained a deep convolutional neural network (inception v3) on whole-slide images obtained from The Cancer Genome Atlas to accurately and automatically classify them into LUAD, LUSC or normal lung tissue.
在這項研究中,我們在從癌症基因組圖譜獲得的全幻燈片圖像上訓練了一個深度卷積神經網絡(初始v3),以準確和自動地將它們分類為LUAD,LUSC或正常肺組織。
The performance of our method is comparable to that of pathologists, with an average area under the curve (AUC) of 0.97.
我們的方法的表現與病理學家的表現相當,曲線下的平均面積(AUC)為0.97。
Our model was validated on independent datasets of frozen tissues, formalin-fixed paraffin-embedded tissues and biopsies.
我們的模型在冷凍組織,福馬林固定的石蠟包埋組織和活組織檢查的獨立數據集上得到驗證。
Furthermore, we trained the network to predict the ten most commonly mutated genes in LUAD.
此外,我們訓練網絡預測LUAD中十個最常見的突變基因。
We found that six of them—STK11, EGFR, FAT1, SETBP1, KRAS and TP53—can be predicted from pathology images, with AUCs from 0.733 to 0.856 as measured on a held-out population.
我們發現其中6個-STK11,EGFR,FAT1,SETBP1,KRAS和TP53-可以從病理圖像中預測,在保持的人群中測量的AUC為0.733-0.856。
These findings suggest that deep-learning models can assist pathologists in the detection of cancer subtype or gene mutations.
這些研究結果表明,深度學習模型可以幫助病理學家檢測癌症亞型或基因突變。
Our approach can be applied to any cancer type, and the code is available at https://github.com/ncoudray/DeepPATH
我們的方法可以應用於任何癌症類型,代碼可以通過以下網址獲得:
https://github.com/ncoudray/DeepPATH