——雷射器——能發射雷射的裝置。1954年製成了第一臺微波量子放大器,獲得了高度相干的微波束。1958年A.L.肖洛和C.H.湯斯把微波量子放大器原理推廣應用到光頻範圍,1960年T.H.梅曼等人製成了第一臺紅寶石雷射器。1961年A.賈文等人製成了氦氖雷射器。1962年R.N.霍耳等人創製了砷化鎵半導體雷射器。以後,雷射器的種類就越來越多。按工作介質分,雷射器可分為氣體雷射器、固體雷射器、半導體雷射器和染料雷射器4大類。近來還發展了自由電子雷射器,大功率雷射器通常都是脈衝式輸出。
一、原理:
除自由電子雷射器外,各種雷射器的基本工作原理均相同,產生雷射的必不可少的條件是粒子數反轉和增益大過損耗,所以裝置中必不可少的組成部分有激勵(或抽運)源、具有亞穩態能級的工作介質兩個部分。激勵是工作介質吸收外來能量後激發到激發態,為實現並維持粒子數反轉創造條件。激勵方式有光學激勵、電激勵、化學激勵和核能激勵等。工作介質具有亞穩能級是使受激輻射佔主導地位,從而實現光放大。雷射器中常見的組成部分還有諧振腔,但諧振腔( 見光學諧振腔)並非必不可少的組成部分,諧振腔可使腔內的光子有一致的頻率、相位和運行方向,從而使雷射具有良好的方向性和相干性。而且,它可以很好地縮短工作物質的長度,還能通過改變諧振腔長度來調節所產生雷射的模式(即選模),所以一般雷射器都具有諧振腔。
二、雷射工作物質
是指用來實現粒子數反轉並產生光的受激輻射放大作用的物質體系,有時也稱為雷射增益媒質,它們可以是固體(晶體、玻璃)、氣體(原子氣體、離子氣體、分子氣體)、半導體和液體等媒質。對雷射工作物質的主要要求,是儘可能在其工作粒子的特定能級間實現較大程度的粒子數反轉,並使這種反轉在整個雷射發射作用過程中儘可能有效地保持下去;為此,要求工作物質具有合適的能級結構和躍遷特性。
三、激勵抽運系統
是指為使雷射工作物質實現並維持粒子數反轉而提供能量來源的機構或裝置。根據工作物質和雷射器運轉條件的不同,可以採取不同的激勵方式和激勵裝置,常見的有以下四種。①光學激勵(光泵)。是利用外界光源發出的光來輻照工作物質以實現粒子數反轉的,整個激勵裝置,通常是由氣體放電光源(如氙燈、氪燈)和聚光器組成,這種激勵方式也稱作燈泵浦。②氣體放電激勵。是利用在氣體工作物質內發生的氣體放電過程來實現粒子數反轉的,整個激勵裝置通常由放電電極和放電電源組成。③化學激勵。是利用在工作物質內部發生的化學反應過程來實現粒子數反轉的,通常要求有適當的化學反應物和相應的引發措施。④核能激勵。是利用小型核裂變反應所產生的裂變碎片、高能粒子或放射線來激勵工作物質並實現粒子數反轉的。
四、光學共振腔
通常是由具有一定幾何形狀和光學反射特性的兩塊反射鏡按特定的方式組合而成。作用為:①提供光學反饋能力,使受激輻射光子在腔內多次往返以形成相干的持續振蕩。②對腔內往返振蕩光束的方向和頻率進行限制,以保證輸出雷射具有一定的定向性和單色性。共振腔作用①,是由通常組成腔的兩個反射鏡的幾何形狀(反射面曲率半徑)和相對組合方式所決定;而作用②,則是由給定共振腔型對腔內不同行進方向和不同頻率的光,具有不同的選擇性損耗特性所決定的。