從認知的角度分析有理函數不定積分為什麼難學?

2020-12-11 虹野看教育

從認知的角度分析有理函數不定積分為什麼難學?

有理函數的不定積分常常會被我們當作解決不定積分最終「模型」,其他的各類函數(除了原函數不是初等函數)都會通過各種變換將其轉換為有理函數來解決。

一方面,有理函數的不定積分總是可以解出來的,這給我們帶來了很大的「安全感」。畢竟有相當多的初等函數的原函數是無法用初等函數表示的,這意味著我們會遇到很多不會解不定積分的題目;另一方面有理函數的原函數應該是比較容易計算的,畢竟通過待定係數法把有理函數分解成部分分式的和幾乎應成為了「程序化」操作。

但是對於初學者來說,有理函數的不定積分學習來卻非常困難。有不少學生在學習到這部分內容的時候感覺非常「痛苦」,有很多問題都難以理解。「每次遇到難以理解的問題,都是自己認知結構順應和升華的時機」,用待定係數法解有理函數的不定積分也是這樣一個機會。可惜的是我們很多教程非常「善解人意」,把有理函數部分的內容處理的非常簡單,以至於不少學生不用「待定係數法」就可以求出。當然如果學生經驗豐富之後,確實會產生很多技巧,但是這不是不認真理解「待定係數法」的理由,畢竟這牽涉到認知結構的變化。

待定係數法解有理函數不定積分的難點如下:

相關焦點

  • 詳解有理函數不定積分的通用解法
    有理函數不定積分的通用解法雖然複雜、不易理解,但幸運的是,在考試中基本不需要用到有理函數不定積分的通用解法。儘管如此,理解通用解法,對提升解題能力、理解能力都是有益無害。1. 什麼是有理函數不定積分?當被積函數的分子或分母均為自變量的n次多項式時,此時的不定積分為有理函數不定積分。下方左圖是有理函數不定積分的三個例子,下方右圖為非有理函數不定積分的例子。2.
  • 數學分析第八章《不定積分》備考指南
    問君能有幾多愁,不定積分不會求!這是整個第八章比較慘澹的基調!弱弱問君,什麼叫不定積分?結合上述兩個定義不難看出,不定積分實際是求導的逆運算,即求被積分函數的原函數。截止到目前,同學們對計算應該有個明確地認識,計算不僅僅拘泥於中小學的關於數的加減乘除運算,還包括求極限,導數,不定積分,定積分,反常積分,數項級數的和,冪級數的和函數,重積分,線面積分,行列式,逆矩陣,特徵值,特徵向量,Jordan標準型等等各種高檔次的運算!所有這些運算中,最能考察一個人的計算能力,非不定積分莫屬!
  • 詳解萬能公式在不定積分中的應用
    在求不定積分中,對於只包含正弦、餘弦、正切、餘切,而不包含其他初等函數的被積函數,可以用萬能公式,化三角函數為有理函數,進而求解不定積分。1. 初用萬能公式對習題1直接套用如下萬能公式。但如果不加觀察和分析,盲目套用萬能公式,有時會使計算更複雜,甚至無法得出正確的計算結果。2. 靈活運用萬能公式若像習題1直接套用萬能公式,會導致高次的、複雜的有理函數。當化簡到上述這一步時,很難進行下去了。
  • 揭開原函數、不定積分、定積分的神秘面紗!
    原函數、不定積分、定積分從定義上看似不難理解,但是其中存在很多的難點和坑,大家都知曉嗎?1.原函數、不定積分、定積分的含義工欲善其事,必先利其器。欲徹底掌握其中的難點,首先要清楚原函數、不定積分、定積分的含義,通俗點講,原函數、不定積分、定積分的含義如下:原函數:如果函數F(x)在定義域內可導,且導函數為f(x),則稱F(x)為f(x)的一個原函數。不定積分:若函數f(x)存在原函數,則f(x)所有原函數的集合稱為不定積分。換句話說,不定積分表示函數f(x)所有的原函數。
  • 談論不定積分及其求法
    一、原函數不定積分的概念原函數的定義: 如果區間I上,可導函數F(x)的導函數為f'(x),即對任一x∈I都有 F'(x)=f(x) 或 dF(x)=f(x) dx那麼函數F(不定積分的定義:在區間 I 上,函數f(x)的帶有任意常數項的的原函數稱為f(x)( f(x)dx ) 在區間 I 上的不定積分,記作∫ f(x)dx .
  • 實變函數第五章《微分與不定積分》
    本講義主要參考周民強《實變函數論》[1],今天開始我們的第五章《微分與不定積分》的講解,重點是要在Lebesgue積分理論中推廣微積分基本定理,並給出萊布尼茨公式成立的充要條件,若往期推文 對實變初學者非常重要的引言Lebesgue積分習題練習實變函數第一章《集合與點集》實變函數第二章《Lebesgue 測度》
  • 3.1.1 原函數與不定積分(裡爾)
    內容提要:原函數與不定積分的概念、不定積分的幾何意義、常見的初等函數的不定積分計算公式、不定積分的線性性質等.
  • 這麼變態的不定積分原來還可以這樣解
    下面的不定積分就是小編上期留下來的題目:1.不推薦的萬能公式法儘管小編從來沒用過萬能公式法,但是小編在這裡還是先用一次萬能公式法來解答上面這道題,這是因為在三角替換中,有一些非常值得大家注意的細節,小編藉此機會把這些容易被忽視的細節拎出來。
  • 求一元函數定積分和不定積分的六種方法
    定積分和不定積分的求法沒必要分開,因為會求不定積分就會求定積分。
  • 《不定積分換元法》內容小結與課件節選
    一、不定積分換元法使用的注意事項●不定積分的換元是基於基本的不定積分公式和不定積分的線性運算法則的,所以對於基本的不定積分公式要非常熟練,常見的不定積分公式見課件與教材. ● 對於計算得到的不定積分結果最好進行驗算,即對求得的不定積分求導數,看化簡、變換後是否等於不定積分的被積函數,如果不相等,則計算錯誤,需要重新計算.
  • 一元函數積分學考點(9):廣義積分與瑕積分
    1.理解原函數與不定積分的概念及其關係,理解原函數存在定理,掌握不定積分的性質。  2.熟記基本不定積分公式。
  • 不定積分換元法使用基本原則總結與參考課件
    不定積分換元法使用的注意事項:●不定積分的換元是基於基本的不定積分公式和不定積分的線性運算法則的,所以對於基本的不定積分公式要非常熟練,常見的不定積分公式見課件. ● 不定積分的換元是基於求導或求微分運算的形式不變性的,即對最終變量的積分等於對中間變量的積分.
  • python快速求解不定積分和定積分
    conda install sympy接下來,我們將介紹利用第三方庫sympy來完成積分的計算。python求解不定積分接下來,我們將介紹上述的不定積分的求解。首先導入sympy庫中的所有類和函數。from sympy import *接下來我們需要定義,本次需要使用到的符號變量x,其定義如下:x = symbols('x')最後我們來計算積分,定積分和不定積分我們都需要用到函數integrate,這個函數的用法非常的簡單,完全可以自己領悟。
  • 定積分與不定積分的計算思路、步驟與例題
    定積分的計算一般思路與步驟(不定積分計算思路從step3開始):Step1:分析積分區間是否關於原點對稱,即為[-a,a],如果是,則考慮被積函數的整體或者經過加減拆項後的部分是否具有奇偶性Step2:考慮被積函數是否具有周期性,如果是周期函數,考慮積分區間的長度是否為周期的整數倍,如果是,則利用周期函數的定積分在任一周期長度的區間上的定積分相等的結論簡化積分計算.
  • 數學分析第九章《定積分》備考指南
    唯一重要的是分割的細度‖T‖,當‖T‖足夠小時,總能使積分和(也稱黎曼和)與某一確定的數J無限接近。反之,如果能構造出兩個不同方式的積分和,使它們的極限不相同,那麼就可斷言該函數在所論區間上是不可積的。例如狄利克雷函數D(x)分別取有理點和無理點,得到的黎曼和不同,所以D(x)在[0,1]上不可積。
  • 求解不定積分時的技巧和陷阱,準備考研的你不容錯過
    在不少不定積分考題中,經常會出現一些陷阱,導致學生不經意間丟掉不該丟的分數。同識別陷阱同樣重要的是技巧,掌握接下來幾大技巧將大大有助於提高解決問題的能力。1.待定係數法,三角換元陷阱對於習題1,不能用正弦函數換元,因為這將改變原不定積分中自變量的定義域。習題1的正確做法應對有理函數進行拆分,拆分後各部分係數的確定採用待定係數法進行確定。
  • 湊微分法解常見函數的積分方法
    在求一個函數的不定積分時,其實我們是在解決,已知函數的導數,求函數原型的問題。而無論採用何種方法,理應是求得的結果,相同或者是恆等的。那麼,總結一下,在面對函數的不定積分時,如何求得呢?思路應該是按下步驟。1.
  • 分析學的5大「步」:微積分到函數論、泛函分析、微分方程
    1696年,洛比達出版第一部微積分教材;1769年,歐拉論述了二重積分;1773年,拉格朗日考察了三重積分;1837年,波爾查諾給出了級數的現代定義;19世紀,柯西奠基了分析學的嚴謹化。18世紀三四十年代,歐拉利用冪級數討論了初等複變函數的性質;1752年,達朗貝爾得出複變函數可微的必要條件;拉普拉斯考慮過複變函數的積分;1825年,柯西討論了虛限定積分,1831年推出了柯西積分公式
  • 如何快且準地求解不定積分
    不定積分的求解是高數較難的部分,本文將通過兩道習題的講解,對不定積分的求解思路進行初步的闡述。1. 有理化+三角函數換元第一步,觀察被積函數形式,發現1+x和1-x能夠湊成平方差公式,優先考慮有理化。由於分子含獨立部分x,因此應對分子進行有理化,有理化過程如下所示:第二步,觀察有理化後函數形式,被積函數可以拆分成兩部分,且其中一部分很容易就能得出原函數,此時應考慮拆分,拆分過程如下所示:第三步,觀察積分部分,若對整個分母採取換元法,最後仍然無法將根號划去。此時,應考慮正弦函數換元法。
  • 在線計算專題(07):不定積分、定積分與重積分、曲線、曲面積分的計算
    1、原函數與不定積分的計算例1 計算以下不定積分參考輸入表達式為執行結果顯示如下.得到結果為一個原函數加上一個任意常數(constant).例3  計算以下不定積分參考輸入表達式為這是一個不可積函數,也可以執行計算得到結果. 只不過這個時候得到的是一個正弦積分函數SinIntegral(x),縮寫為Si(x),它一樣的可以計算函數值.