為什麼等邊三角形的三個內角都是60度,原來是這樣

2021-01-19 專注小學數學

提到平面圖形的穩定性,大家首先會想到什麼?三角形!

沒錯,三角形是所有平面圖形中穩定性最好的。四邊形相對來說,穩定性就要差很多,拉伸與擠壓都產生變形。三角形就不會,除非受力過大,三角形被壓斷了。

要將一個四邊形讓它穩定一些,怎麼辦呢?很簡單,只需要添加一條線段,讓它變成兩個三角形即可。

在我們平常生活中,很多東西都是利用了三角形的穩定性,也隨處可見,比如說我們自行車的車架、比如塔吊、人字梯、比如斜拉橋等等。

斜拉橋

什麼是三角形呢?由三條不在同一條直線上的線段,首尾依次相接,所組成的平面圖形稱為三角形。

三角形的性質非常多,初中、高中會有專門的章節。不過在小學階段所要掌握的內容比較少。只需要了解任意三角形的三個內角和都等於180度。利用這個性質,給出兩個內角的度數,求第三個內角度數。

三角形的三個內角和等於180度,在小學期間只要記住這個結論就可以。至於這個證明,有很多種。到初中學了平行線性質之後,證明就非常簡單,根據內錯角相等,同位角相等或者同旁內角互補就可以證明。

在同一個三角形當中,有大角對大邊或說大邊對大角的這樣的性質。

所以如果說一個三角形,它有兩條邊相等的話,那這個三角形就是等腰三角形,因此它的兩個底角是相等的。比如只要告訴我們是等腰直角三角形,那麼直接就可以知道它的兩個底角都是45度。

三條邊都相等的三角形最特殊,叫等邊三角形也稱之為正三角形。

由於大角對大邊,等邊三角形的三條邊相等,那麼它所對應的三個角它也相等,所以等邊三角形的三個內角都是60度。

根據定義,三角形是由三條不在同一直線上的線段首尾相連組成的,那麼是不是任意長度的三條線段都能組成三角形呢?不是的,這三條線段的長度之間有一定的關聯性,必須滿足一定範圍。

也就是組成一個三角形,必須滿足:任意兩邊之和大於第三邊。

這是個定理,當然我們也可以證明一下。這也就是一句話的事情,兩點之間,他有無數種連接方法,可以拐個彎或者說繞曲線。

但是兩點之間,線段最短。所以a+b>c,另外兩條邊,同理可證明。

檢驗三條線段能否組成三角形,是不是每一條邊都要去這樣進行驗算?那倒大可不必,我們只需要選取較短的兩條線段相加,如果大於最長的那條線段,說明這三條線段是可以組成三角形的。

根據任意兩邊之和大於第三邊,可以推導出三角形的任意兩邊之差(大減小)小於第三邊。

比如說我們判斷三條長度分別為3釐米、 6釐米、 10釐米線段,能否組成三角形?因為3+6<10,顯然不能組成三角形。

三角形的穩定性

如果我們知道三角形的兩條線段的長度,可以推導出第三條的範圍。

也就是第三條邊的長度是大於已知兩條邊的差且小於這兩條邊的和。

比如要組成一個三角形,有兩條線段,長度分別為3釐米和9釐米,第三條線段a,它的長度範圍多少?

我們直接可以根據這個性質來計算:9-3<a<9+3,也就算a介於6釐米與12釐米之間,當然這兩邊是不能帶等號的。

下一篇我們將簡單介紹下三角形的分類。敬請期待……

有喜歡我文章的朋友歡迎大家關注訂閱、點讚、收藏、轉發。

相關焦點

  • 小學數學之探索和發現三角形的三個內角的度數和等於180°
    1、教學目標:探索和發現三角形的三個內角的度數和等於180°。 2、教學重點:探索和發現三角形的三個內角的度數和等於180°。2、等腰三角形的( )條邊相等;等邊三角形的( )條邊相等,( )個角也相等。3、等邊三角形是( )的等腰三角形。二、探究、嘗試。自學內容一、二1、三角形內角和的解釋。
  • 四年級數學下冊,《圖形分類》、《三角形內角和》培優訓練和小結
    三、四年級數學下冊(BS版)《三角形分類》知識點小結1、三個角都是銳角的三角形是(銳角)三角形。2、有一個角是直角的三角形是(直角)三角形。3、有一個角是鈍角的三角形是(鈍角)三角形。4、三角形按角的大小可以分為(銳角)三角形、(直角)三角形和(鈍角)三角形。5、有兩條邊相等的三角形叫(等腰)三角形。6、三條邊都相等的三角形叫(等邊)三角形。7、三條邊都不相等的三角形叫(不等邊)三角形。
  • 三邊相等的三角形叫啥?
    三條邊都相等的三角形叫做等邊三角形。等邊三角形(又稱正三邊形),為三邊相等的三角形,其三個內角相等,均為60°,它是銳角三角形的一種。等邊三角形也是最穩定的結構。  1等邊三角形  等邊三角形(又稱正三邊形),為三邊相等的三角形,其三個內角相等,均為60°,它是銳角三角形的一種。等邊三角形也是最穩定的結構。
  • 小學數學:三角形的複習,定義、特性、分類
    4.內角和:三角形的內角和等於180°;四邊形的內角和是360°;五邊形的內角和是540°三角形的表達:為了表達方便,用字母A、B、C分別表示三角形的三個頂點,三角形可表示成△ABC。三角形的分類及定義按照角大小來分:銳角三角形,直角三角形,鈍角三角形。三個角都是銳角的三角形叫做銳角三角形。
  • 人教版(四下)「三角形內角和、多邊形內角和、外角」導學案
    知識點:1.三角形的內角和;2.多邊形的內角和;3.三角形的一個外角等於與它不相鄰的兩個內角的和。一、三角形的內角和1.三角形的內角及內角和的意義:三角形的內角是指三角形裡面的角,三角形的內角和就是這3個內角的度數之和。2.三角形內角和定理:三角形內角和是180°.
  • 「三角形內角和是180°」的驗證教學
    幾種常見方法的比較 驗證「三角形的內角和是180°」,常見的有三種方法:(1)用量角器量出三個角的度數,然後加起來看是不是180°(簡稱「測量求和法」);(2)將三角形三個角剪下來,再將它們拼在一起看能不能組成平角(簡稱「剪拼法」);(3)將三個角折起來拼在一起,看能不能組成平角(簡稱「折拼法」)。
  • 三角形的兩條邊長分別是3和4,求第三條邊的長度,50%的家長會錯
    在小學階段,三角形的幾個重要定理要牢記,就好比我們背乘法口訣一樣重要。首當其衝的是三角形的內角和定理。三角形的內角和等於180度。這是個定值,它不會隨著三角形的大小以及形狀的改變而改變。關於這個180度的內角和的證明,到了初中學了平行線的性質之後,證明是非常簡單的,而且比小學階段的證明方法要嚴謹。在小學階段只要內角和是180度就可以。
  • 初三數學 中考複習 利用這個方法讓你掌握三角形的費馬點問題
    6),此時這個點E就是△ABC的費馬點.實際上,這就是費馬問題的變形.把△AEC繞點C順時針旋轉60°,得到△GFC,則可以得到△EFC、△AGC都是等邊三角形,則將AE+BE+CE轉化為BE+EF+FG,因為B、G是定點,所以可以利用兩點之間線段最短來解決問題.
  • 帕斯卡和三角形內角和的故事
    那些美妙的幾何圖形都是他的好朋友。這一天,12歲的帕斯卡用粉筆在地上畫了一個長方形,他仔細端祥,滿心歡喜,接著,連出一條對角線。這樣,一對漂亮的直角三角形孿生兄弟出現在他面前,他們微笑著和帕斯卡打招呼:「你好啊,聰明的帕斯卡。」帕斯卡欣喜地望著這對雙胞胎,一時間,若有所悟,自言自語道:「直角三角形的內角和不就是180°嗎?」「什麼?什麼?
  • 初中階段數學三角形相關知識點匯總,超全
    拓展:三角形三個角的角平分線的交點到三條邊的距離相等。角平分線通常用於求點到直線距離、三角形面積角度。拓展三個概念:重心:三角形中線的交點,重心分中線上下比為2:1。內心:三角形角平分線的交點,內心到三邊的距離相等。外心:三角形垂直平分線的交點,外心到三個頂點的距離相等。
  • 小學數學知識點:三角形
    Hello,大家好,今天給大家來整理一下關於人教版四下的三角形內容!一、三角形的概念1.三角形:由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。高:從三角形一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高。3. 底:上述的這條對邊叫做三角形的底。二、三角形的分類1.
  • 關於三角形內角和的題,這些你都會嗎,來試試吧
    三角形內角和,師生通過不同的方式去「證明」它,結果都是180。雖然花費了大家近三十分鐘的時間,但其實就是一句話:三角形內角和等於180。老師說,今天這節課,把這句話被熟就可以了。老師說:「那好,既然大家都已經背會了,咱們就做幾個練習題。」1、一個直角三角形中,一個銳角是75,另一個銳角是多少度?「就知道一個角的度數,怎麼算呀?」有幾個學生小聲說。「直角三角形,直角。」一個學生提醒道。
  • 初中數學「三角形」單元學習設計
    要求:(1)學習什麼是多邊形覆蓋平面;(2)用邊長相同的等邊三角形、正方形、正五邊形、正六邊形中的任意一種進行鑲嵌;(3)用上面的兩種進行鑲嵌;(4)剪出一些形狀、大小相同的不等邊三角形鑲嵌;(5)剪出一些形狀
  • 三角形的重心、垂心、內心、外心、穩定性、海倫公式、三邊長關係
    三角形的內心、外心、垂心、中心可由兩條邊確定,不需要第三邊,就是因此。③三角形的穩定性:三條邊相等,則兩個三角形全等。(SSS定理)即三條邊的邊長確定,就確定了一個唯一形狀的三角形,三角形不會再形變,所以穩定。
  • 七年級下學期《三角形的內角和與外角和》2020年高頻易錯題集
    【點評】本題主要考查了角的大小的比較,解決問題的關鍵是掌握度分秒的換算.>A.60°B.10°C.45°D.10°或60°【分析】當△ACD為直角三角形時,存在兩種情況:∠ADC=90°或∠ACD=90°,根據三角形的內角和定理可得結論.
  • 「七年級」三角形:內角和、外角、外角和定理
    01內角和定理三角形內角和定理:三角形內角和為180°.雖然列舉了4種方法,但其實都是一個思路,構造平行線,將三角形三個內角轉化為有特殊位置關係的角組合.所以我也曾經想過,是否有不用平行的方法來證明內角和為180°?法5:帕斯卡的做法三角形內角和等於兩個直角三角形內角和減一個平角.
  • 《三角形》單元測試卷友情提示:重點就這些,對今後學習意義重大
    八年級數學第一章學習《三角形》,重點需要把握好以下幾點。三角形的邊要求會用符號表示三角形,了解按邊的大小關係對三角形進行分類;理解掌握三角形三邊之間的不等關係,並會初步應用它們來解決問題;進一步認識三角形的概念及其基本要素,掌握三角形三邊關係。
  • 八年級同學快圍過來,求三角形中角的度數你會嗎?
    由於受新冠病毒(2019-nCov)的影響,全國大部分省市都延長了寒假的時間。儘管寒假延長了,但是同學們並沒有因新冠病毒防控影響了學習。近段時間,全國中小學按照教育部」停課不停學」的工作要求,已經在開展線上教學和學習活動。
  • 專題二:多邊形內角和與外角和,掌握公式明確定理,學會用三角形
    多邊形內角和與外角和的求解,主要是掌握內角和的公式,同時明確外角和等於360度。並且要學會利用三角形的外角的性質,進行角度之間的轉換,掌握多角度和的求解方法。這部分主要的核心考點有:1、多邊形內角和定理:n邊形的內角和為(n-2)*180°,2、多邊形外角和定理:n邊形的n個外角的和為360°。
  • 八年級數學暑假自學指南:認識三角形,掌握這四點內容考試無憂
    人教版的第一章就是認識三角形,要想把它學好,最基本要求:(1)了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形;(2)理解三角形三邊不等的關係,會判斷三條線段能否構成一個三角形,並能運用它解決有關的問題。